CST, an Herbal Formula, Exerts Anti-Obesity Effects through Brain-Gut-Adipose Tissue Axis Modulation in High-Fat Diet Fed Mice
1
Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, 814-Siksa-dong, Goyang, Gyeonggi-do 10326, South Korea
2
NosQuest, 463-400 USPACE 1A-1103, Daewang Pangyoro 660, Bundanggu, Seongnamsi, Gyeonggi-do 13494, South Korea
3
Department of Otorhinolaryngology Head and Neck Surgery & Institute for Medical Device Clinical Trials, College of Medicine, Korea University, 148 Gurodong-ro, Guro-gu, Seoul 08308, South Korea
4
Department of Korean Rehabilitation Medicine, College of Korean Medicine, Gachon University, Incheon 22318, South Korea
5
Department of Preventive Medicine, College of Korean Medicine, Kyunghee University, Seoul 02453, South Korea
*
Author to whom correspondence should be addressed.
Academic Editors: Min-Hsiung Pan and Filomena Conforti
Molecules 2016, 21(11), 1522; https://doi.org/10.3390/molecules21111522
Received: 7 September 2016 / Revised: 1 November 2016 / Accepted: 9 November 2016 / Published: 11 November 2016
(This article belongs to the Special Issue Natural Products in Anti-Obesity Therapy)
The brain, gut, and adipose tissue interact to control metabolic pathways, and impairment in the brain-gut-adipose axis can lead to metabolic disorders, including obesity. Chowiseungcheng-tang (CST), a herbal formulation, is frequently used to treat metabolic disorders. Here, we investigated the anti-obesity effect of CST and its link with brain-gut-adipose axis using C57BL/6J mice as a model. The animals were provided with a normal research diet (NRD) or high-fat diet (HFD) in absence or presence of CST or orlistat (ORL) for 12 weeks. CST had a significant anti-obesity effect on a number of vital metabolic and obesity-related parameters in HFD-fed mice. CST significantly decreased the expression levels of genes encoding obesity-promoting neuropeptides (agouti-related peptide, neuropeptide Y), and increased the mRNA levels of obesity-suppressing neuropeptides (proopiomelanocortin, cocaine-and amphetamine-regulated transcript) in the hypothalamus. CST also effectively decreased the expression level of gene encoding obesity-promoting adipokine (retinol-binding protein-4) and increased the mRNA level of obesity-suppressing adipokine (adiponectin) in visceral adipose tissue (VAT). Additionally, CST altered the gut microbial composition in HFD groups, a phenomenon strongly associated with key metabolic parameters, neuropeptides, and adipokines. Our findings reveal that the anti-obesity impact of CST is mediated through modulation of metabolism-related neuropeptides, adipokines, and gut microbial composition.
View Full-Text
Keywords:
herb; chowiseungcheng-tang; obesity; neuropeptide; adipokine; gut microbiota; brain-gut-adipose tissue axis
▼
Show Figures
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
MDPI and ACS Style
Ansari, A.; Bose, S.; Yadav, M.K.; Wang, J.-H.; Song, Y.-K.; Ko, S.-G.; Kim, H. CST, an Herbal Formula, Exerts Anti-Obesity Effects through Brain-Gut-Adipose Tissue Axis Modulation in High-Fat Diet Fed Mice. Molecules 2016, 21, 1522.
Show more citation formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.
- Supplementary File 1:
Supplementary (PDF, 167 KB)