Structural Characterization of the Avidin Interactions with Fluorescent Pyrene-Conjugates: 1-Biotinylpyrene and 1-Desthiobiotinylpyrene †
Abstract
:1. Introduction
2. Results and Discussion
2.1. Crystallization and the Overall Features of Avidin in Its Complexes
2.2. Fluorescence Properties
2.3. N-Linked Glycosylation Site
2.4. Crystal Packing and Intermolecular Interactions
2.5. Binding of the Pyrene Derivatives
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. General Procedure of the Synthesis of 1-Desthiobiotinylpyrene (D9P)
3.2.2. Complex Formation and Crystallization
3.2.3. X-ray Data Collection and Processing
3.2.4. Structure Determination and Refinement
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Flower, D.R. Structural relationship of streptavidin to the calycin protein superfamily. FEBS Lett. 1993, 333, 99–102. [Google Scholar] [CrossRef]
- Green, N.M. Avidin. Adv. Protein Chem. 1975, 29, 85–133. [Google Scholar] [PubMed]
- Laitinen, O.H.; Hytönen, V.P.; Nordlund, H.R.; Kulomaa, M.S. Genetically engineered avidins and streptavidins. Cell. Mol. Life Sci. 2006, 63, 2992–3017. [Google Scholar] [CrossRef] [PubMed]
- Wilchek, M.; Bayer, E.A. Introduction to avidin-biotin technology. Methods Enzymol. 1990, 184, 5–13. [Google Scholar] [PubMed]
- Klein, G.; Humbert, N.; Gradinaru, J.; Ivanova, A.; Gilardoni, F.; Rusbandi, U.E.; Ward, T.R. Tailoring the active site of chemzymes by using a chemogenetic-optimization procedure: Towards substrate-specific artificial hydrogenases based on the biotin-avidin technology. Angew. Chem. Int. Ed. 2005, 44, 7764–7767. [Google Scholar] [CrossRef] [PubMed]
- Bui, D.T.; Nicolas, J.; Maksimenko, A.; Desmaële, D.; Couvreur, P. Multifunctional squalene-based prodrug nanoparticles for targeted cancer therapy. Chem. Commun. 2014, 50, 5336–5338. [Google Scholar] [CrossRef] [PubMed]
- Maiti, S.; Park, N.; Han, J.H.; Jeon, H.M.; Lee, J.H.; Bhuniya, S.; Kang, C.; Kim, J.S. Gemcitabine-coumarin-biotin conjugates: A target specific theranostic anticancer prodrug. J. Am. Chem. Soc. 2013, 135, 4567–4572. [Google Scholar] [CrossRef] [PubMed]
- Hama, Y.; Urano, Y.; Koyama, Y.; Kamiya, M.; Bernardo, M.; Paik, R.S.; Shin, I.S.; Paik, C.H.; Choyke, P.L.; Kobayashi, H. A target cell-specific activatable fluorescence probe for in vivo molecular imaging of cancer based on a self-quenched avidin-rhodamine conjugate. Cancer Res. 2007, 67, 2791–2799. [Google Scholar] [CrossRef] [PubMed]
- Buranda, T.; Huang, J.; Perez-Luna, V.H.; Schreyer, B.; Sklar, L.A.; Lopez, G.P. Biomolecular recognition on well-characterized beads packed in microfluidic channels. Anal. Chem. 2002, 74, 1149–1156. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.-S.; Liu, P.-Y.; Yen, H.-Y.; Hsu, T.-L.; Wong, C.-H. Development of trifunctional probes for glycoproteomic analysis. Chem. Commun. 2010, 46, 5575–5577. [Google Scholar] [CrossRef] [PubMed]
- Kasuya, T.; Jung, J.; Kinoshita, R.; Goh, Y.; Matsuzaki, T.; Iijima, M.; Yoshimoto, N.; Tanizawa, K.; Kuroda, S. Chapter 8—Bio-nanocapsule-liposome conjugates for in vivo pinpoint drug and gene delivery. Methods Enzymol. 2009, 464, 147–166. [Google Scholar] [PubMed]
- Dancey, G.; Begent, R.H.; Meyer, T. Imaging in targeted delivery of therapy to cancer. Target Oncol. 2009, 4, 201–217. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.-L. Liposomes in ultrasonic drug and gene delivery. Adv. Drug Deliv. Rev. 2008, 60, 1167–1176. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wu, L.; Hu, P.; Han, S.; Zhang, T.; Fan, H.; Jin, W.; Jin, Q.; Mu, Y. Soft nanomaterial-based targeting polymersomes for near-infrared fluorescence multispectral in vivo imaging. Nanoscale 2012, 4, 7097–7105. [Google Scholar] [CrossRef] [PubMed]
- Relogio, P.; Bathfield, M.; Haftek-Terreau, Z.; Beija, M.; Favier, A.; Giraud-Panis, M.-J.; D’Agosto, F.; Mandrand, B.; Farinha, J.P.S.; Charreyre, M.-T.; et al. Biotin-end-functionalized highly fluorescent water-soluble polymers. Polym. Chem. 2013, 4, 2968–2981. [Google Scholar] [CrossRef]
- Elia, G. Biotinylation reagents for the study of cell surface proteins. Proteomics 2008, 8, 4012–4024. [Google Scholar] [CrossRef] [PubMed]
- Corona, C.; Bryant, B.K.; Arterburn, J.B. Synthesis of a biotin-derived alkyne for Pd-catalyzed coupling reactions. Org. Lett. 2006, 8, 1883–1886. [Google Scholar] [CrossRef] [PubMed]
- Hansen, T.M.; Engler, M.M.; Forsyth, C.J. Total synthesis of a biotinylated derivative of phorboxazole A via Sonogashira coupling. Bioorg. Med. Chem. Lett. 2003, 13, 2127–2130. [Google Scholar] [CrossRef]
- Plażuk, D.; Zakrzewski, J.; Salmain, M. Biotin as acylating agent in the Friedel–Crafts reaction. Avidin affinity of biotinyl derivatives of ferrocene, ruthenocene and pyrene and fluorescence properties of 1-biotinylpyrene. Org. Biomol. Chem. 2011, 9, 408–417. [Google Scholar] [CrossRef] [PubMed]
- Stura, E.A.; Wilson, I.A. Applications of the streak seeding technique in protein crystallization. J. Cryst. Growth 1991, 110, 270–282. [Google Scholar] [CrossRef]
- Pugliese, L.; Malcovati, M.; Coda, A.; Bolognesi, M. Crystal structure of apo-avidin from hen egg-white. J. Mol. Biol. 1994, 235, 42–46. [Google Scholar] [CrossRef]
- Livnah, O.; Bayer, E.A.; Wilchek, M.; Sussman, J.L. Three-dimensional structures of avidin and the avidin-biotin complex. Proc. Natl. Acad. Sci. USA 1993, 90, 5076–5080. [Google Scholar] [CrossRef] [PubMed]
- Krissinel, E.; Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 2007, 372, 774–797. [Google Scholar] [CrossRef] [PubMed]
- Krissinel, E. Crystal contacts as nature’s docking solutions. J. Comput. Chem. 2010, 31, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Wallace, A.C.; Laskowski, R.A.; Thornton, J.M. LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 1995, 8, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Kabsch, W. Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr. Sect. D Biol. Crystallogr. 2010, 66, 133–144. [Google Scholar] [CrossRef] [PubMed]
- Vagin, A.A.; Isupov, M.N. Spherically averaged phased translation function and its application to the search for molecules and fragments in electron-density maps. Acta Crystallogr. Sect. D Biol. Crystallogr. 2001, 57, 1451–1456. [Google Scholar] [CrossRef] [Green Version]
- Terai, T.; Maki, E.; Sugiyama, S.; Takahashi, Y.; Matsumura, H.; Mori, Y.; Nagano, T. Rational development of caged-biotin protein-labeling agents and some applications in live cells. Chem. Biol. 2011, 18, 1261–1272. [Google Scholar] [CrossRef] [PubMed]
- Strzelczyk, P.; Bujacz, A.; Plażuk, D.; Zakrzewski, J.; Bujacz, G. Structural investigation of the interactions of biotinylruthenocene with avidin. Chem. Biol. Interact. 2013, 204, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Emsley, P.; Lohkamp, B.; Scott, W.G.; Cowtan, K. Features and development of Coot. Acta Crystallogr. Sect. D Biol. Crystallogr. 2010, 66, 486–501. [Google Scholar] [CrossRef] [PubMed]
- Emsley, P.; Cowtan, K. Coot: Model-building tools for molecular graphics. Acta Crystallogr. Sect. D Biol. Crystallogr. 2004, 60, 2126–2132. [Google Scholar] [CrossRef] [PubMed]
- Vagin, A.A.; Steiner, R.A.; Lebedev, A.A.; Potterton, L.; McNicholas, S.; Long, F.; Murshudov, G.N. REFMAC5 dictionary: Organization of prior chemical knowledge and guidelines for its use. Acta Crystallogr. Sect. D Biol. Crystallogr. 2004, 60, 2184–2195. [Google Scholar] [CrossRef] [PubMed]
- Winn, M.D.; Ballard, C.C.; Cowtan, K.D.; Dodson, E.J.; Emsley, P.; Evans, P.R.; Keegan, R.M.; Krissinel, E.B.; Leslie, A.G.W.; McCoy, A.; et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. Sect. D Biol. Crystallogr. 2011, 67, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Sample Availability: Samples of 1-biotinylpyrene and 1-desthiobiotinylpyrene are available from the author (D.P.).
Chains | No. of Interface Residues | Interface Area (Å2) | No. of Hydrogen Bonds | No. of Potential Salt Bridges |
---|---|---|---|---|
A:B | 49 | 1766 | 32 | 7 |
A:C | 15 | 622 | 6 | 0 |
A:D | 4 | 147 | 0 | 0 |
C:D | 48 | 1751 | 33 | 9 |
B:D | 16 | 634 | 6 | 0 |
B:C | 4 | 148 | 0 | 0 |
PDB Code | 5IRU | 5IRW |
---|---|---|
X-ray Data Collection | ||
Radiation source | PETRA III, EMBL C/O DESY | |
Wavelength (Å) | 0.99999 | 0.99999 |
Temperature (K) | 100 | 100 |
Space group | P212121 | P212121 |
Unit cell parameters (Å) | a = 57.16, b = 81.95, c = 107.89 | a = 58.97, b = 81.52, c = 107.78 |
Solvent content (%) | 44.1 | 45.5 |
Resolution range (Å) | 46.88–2.00 (2.05–2.00) | 43.68–2.10 (2.15–2.10) |
Completeness (%) | 99.4 (99.4) | 99.9 (99.9) |
<I/σ(I)> | 12.48 (3.61) | 24.34 (3.35) |
Total reflections | 222,713 (30,904) | 202,435 (26,978) |
Unique reflections | 34,767 (4669) | 30,993 (3971) |
Redundancy | 6.41 (6.62) | 6.53 (6.79) |
Rint (%) | 8.20 (50.80) † | 4.10 (69.50) † |
CC1/2 | 99.6 (95.8) | 100.0 (92.7) |
Refinement | ||
Rwork | 0.222 ‡ | 0.195 ‡ |
Rfree | 0.265 ‡ | 0.231 ‡ |
No. of atoms (non-H): | ||
Protein | 3828 | 3791 |
H2O | 227 | 112 |
B9P | 124 | - |
D9P | - | 95 |
R.m.s. deviations from ideal: | ||
Bond lengths (Å) | 0.02 | 0.02 |
Bond angles (°) | 1.98 | 1.96 |
Average B factor (Å2) | 53.58 | 67.38 |
Ramachandran plot statistics: | ||
Favoured regions (%) | 99.0 | 97.0 |
Allowed regions (%) | 1.0 | 3.0 |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strzelczyk, P.; Plażuk, D.; Zakrzewski, J.; Bujacz, G. Structural Characterization of the Avidin Interactions with Fluorescent Pyrene-Conjugates: 1-Biotinylpyrene and 1-Desthiobiotinylpyrene. Molecules 2016, 21, 1270. https://doi.org/10.3390/molecules21101270
Strzelczyk P, Plażuk D, Zakrzewski J, Bujacz G. Structural Characterization of the Avidin Interactions with Fluorescent Pyrene-Conjugates: 1-Biotinylpyrene and 1-Desthiobiotinylpyrene. Molecules. 2016; 21(10):1270. https://doi.org/10.3390/molecules21101270
Chicago/Turabian StyleStrzelczyk, Paweł, Damian Plażuk, Janusz Zakrzewski, and Grzegorz Bujacz. 2016. "Structural Characterization of the Avidin Interactions with Fluorescent Pyrene-Conjugates: 1-Biotinylpyrene and 1-Desthiobiotinylpyrene" Molecules 21, no. 10: 1270. https://doi.org/10.3390/molecules21101270
APA StyleStrzelczyk, P., Plażuk, D., Zakrzewski, J., & Bujacz, G. (2016). Structural Characterization of the Avidin Interactions with Fluorescent Pyrene-Conjugates: 1-Biotinylpyrene and 1-Desthiobiotinylpyrene. Molecules, 21(10), 1270. https://doi.org/10.3390/molecules21101270