In Vivo Antihyperglycemic Activity of a Lanosteryl Triterpene from Protorhus longifolia
Abstract
:1. Introduction
2. Results and Discussion
2.1. Compound Identification
2.2. Antihyperglycemic Activity
Group | Day 0 | Day 7 | Day 14 | % Decrease |
---|---|---|---|---|
Non-diabetic control | 5.40 ± 0.38 | 5.40 ± 0.26 | 5.40 ± 0.36 | |
Non-diabetic + RA-3 | 5.50 ± 0.25 | 5.40 ± 0.17 | 5.30 ± 0.17 | |
Diabetic + 2% T20 | 16.50 ± 3.09 | 14.00 ± 4.94 | 18.90 ± 3.29 | |
Diabetic + RA-3 | 11.80 ± 1.19 | 10.20 ± 4.50 | 7.45 ± 1.58 * | 37 |
Diabetic + metformin | 18.50 ± 2.12 | 6.75 ± 0.55 * | 6.80 ± 1.60 * | 63 |
Group | HK (Units/mL) | GK (Units/mL) | G6Pase (Units/mL) | Glycogen Content (mg/g) |
---|---|---|---|---|
Non-diabetic control | 0.73 ± 0.05 * | 0.52 ± 0.01 * | 1.42 ± 0.22 | 7.50 ± 0.09 |
Non-diabetic + RA-3 | 0.83 ± 0.00 * | 0.68 ± 0.02 * | 0.81 ± 0.05 * | 8.00 ± 0.04 |
Diabetic + 2% T20 | 0.06 ± 0.01 | 0.02 ± 0.02 | 1.73 ± 0.22 | 6.00 ± 0.08 |
Diabetic + RA-3 | 0.74 ± 0.01 * | 0.53 ± 0.02 * | 0.99 ± 0.11 * | 9.00 ± 0.18 |
Diabetic + metformin | 0.93 ± 0.04 * | 0.74 ± 0.01 * | 1.53 ± 0.28 | 7.00 ± 0.00 |
Group | GSH (nmol/mL) | SOD (Units/mL) | CAT (Units/mL) | Antioxidant Status (mM) | MDA (nmol/µL) |
---|---|---|---|---|---|
ND control | 22.31 ± 0.06 * | 35.08 ± 0.04 * | 40.10 ± 0.01 * | 0.089 ± 0.12 * | 0.40 ± 0.01 |
ND + RA-3 | 18.63 ± 0.10 * | 32.90 ± 0.14 * | 32.06 ± 0.22 * | 0.135 ± 0.01 * | 0.30 ± 0.04 |
D + 2% T20 | 13.50 ± 0.04 | 21.51 ± 2.41 | 13.31 ± 1.02 | 0.002 ± 0.29 | 0.90 ± 0.02 |
D + RA-3 | 13.32 ± 0.12 | 45.24 ± 1.07 * | 30.12 ± 0.41 * | 0.032 ± 0.04 * | 0.40 ± 0.08 |
D + metformin | 14.71 ± 0.10 | 41.71 ± 0.12 * | 30.22 ± 0.19 * | 0.199 ± 0.31 * | 0.60 ± 0.03 |
3. Experimental Section
3.1. General
3.2. Plant Material
3.3. Animals
3.4. Antihyperglycemic Study in Vivo
- Group I: non-diabetic rats, received 2% Tween 20 (carrier solvent)
- Group II: non-diabetic rats, received RA-3 in 2% Tween 20 (100 mg/kg b.w)
- Group III: diabetic rats, received 2% Tween 20
- Group IV: diabetic rats, received RA-3 at 100 mg/kg b.w
- Group V: diabetic rats, received metformin at 100 mg/kg b.w
3.4.1. Oral Glucose Tolerance Test
3.4.2. Biochemical Analysis
3.4.3. Antioxidant Status
3.4.4. Hexokinase and Glucokinase Activity
3.4.5. Glucose-6-phosphatase Activity Assay
3.4.6. Liver Glycogen Content
3.5. Data Analysis
4. Conclusions
Acknowledgements
Author Contributions
Conflicts of Interest
References
- Shaw, J.E.; Sicree, R.A.; Zimmet, P.Z. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res. Clin. Pract. 2010, 87, 4–14. [Google Scholar] [CrossRef] [PubMed]
- Stolar, M.W.; Hoogwerf, B.J.; Gorshow, S.M.; Boyle, P.J.; Wales, D. Managing type 2 diabetes: Going beyond glycemic control. Manag. Care Pharm. 2008, 14, S2–S19. [Google Scholar]
- Ortiz-Andrade, R.R.; Garcίa-Jiménez, S.; Castillo-España, P.; Ramίrez-Avilla, G.; Villalobos-Milona, R.; Estrada-Soto, S. Alpha glucosidase inhibitory activity of the methanolic extract from Tournefortia hartwegiana: An anti-hyperglycemic agent. J. Ethnopharmacol. 2007, 109, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, R.M.P. Evaluation of the hypoglycemic and hypolipidemic effects of triterpenoids from Prosthechea michuacana in STZ-induced type 2 diabetes in mice. Pharmacologia 2013, 4, 170–179. [Google Scholar]
- Ramachandran, S.; Rajasekaran, A.; Manisenthilkumar, K.T. Investigation of hypoglycemic, hypolipidemic and antioxidant activities of aqueous extract of Terminalia paniculata bark in diabetic rats. Asian Pac. J. Trop. Biomed. 2012, 2, 262–268. [Google Scholar] [CrossRef]
- Hung, H.; Qian, K.; Morris-Natschke, S.L.; Hsu, C.; Lee, K. Recent discovery of plantderived anti-diabetic natural products. Nat. Prod. Rep. 2012, 29, 580–606. [Google Scholar] [CrossRef] [PubMed]
- Nankar, R.P.; Doble, M. Non-peptidyl insulin mimetics as a potential antidiabetic agent. Drug Discov. Today 2013, 18, 15–16. [Google Scholar] [CrossRef] [PubMed]
- Hou, W.; Li, Y.; Zhang, Q.; Wei, X.; Peng, A.; Chen, L.; Wei, Y. Triterpene acids isolated from Lagerstroemia speciosa leaves as α-glucosidase inhibitors. Phytother. Res. 2009, 23, 614–618. [Google Scholar] [CrossRef] [PubMed]
- Santos, F.A.; Frota, J.T.; Arruda, B.R.; de Melo, T.S.; da Silva, A.A.; Brito, G.A.; Chaves, M.H.; Rao, V.S. Antihyperglycemic and hypolipidemic effects of α, β-amyrin, a triterpenoid mixture from Protium heptaphyllum in mice. Lipids Health Dis. 2012, 11, 98. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.S.; Phuong, T.T. Stimulation of glucose uptake by triterpenoids from Weigela subsessilis. Phytother. Res. 2010, 24, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Alqahtani, A.; Hamid, K.; Kam, A.; Wong, K.H.; Abdelhak, Z.; Razmovski-Naumovski, V.; Chan, K.; Li, K.M.; Groundwater, P.W.; Li, G.Q. The pentacyclic triterpenoids in herbal medicines and their pharmacological activities in diabetes and diabetic complications. Curr. Med. Chem. 2013, 20, 908–931. [Google Scholar] [PubMed]
- Machaba, K.E.; Cobongela, S.Z.Z.; Mosa, R.A.; Lawal, A.O.; Djarova, T.G.; Opoku, A.R. In vivo anti-hyperlipidemic activity of the triterpene from the stem bark of Protorhus longifolia (Benrh). Engl. Lipids Health Dis. 2014, 13, 131. [Google Scholar] [CrossRef] [PubMed]
- Mosa, R.A.; Naidoo, J.J.; Nkomo, F.S.; Mazibuko, S.E.; Muller, C.J.F.; Opoku, A.R. In vitro anti-hyperlipidemic potential of triterpenes from stem bark of Protorhus longifolia. Planta Med. 2014, 80, 1685–1691. [Google Scholar] [PubMed]
- Khathi, A.; Serumula, M.R.; Myburg, R.B.; Van Heerden, F.R.; Musabayane, C.T. Effects of Syzygium aromaticum-derived triterpenes on postprandial blood glucose in streptozotocin-induced diabetic rats following carbohydrate challenge. PLoS ONE 2013, 8, e81632. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.M.; Kim, M.J.; Choi, M.S.; Kwon, E.Y.; Lee, M.K. Inhibitory effects of ursolic acid on hepatic polyol pathway and glucose production in streptozotocin-induced diabetic mice. Metab. Clin. Exp. 2010, 59, 512–519. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, V.; Saravanan, R. Efficacy of asiatic acid, a pentacyclic triterpene on attenuating the key enzymes activities of carbohydrate metabolism in streptozotocin-induced diabetic rats. Phytomedicine 2013, 20, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Baky, A.E. Quercetin protective action on oxidative stress, sorbitol, insulin resistance and β-cells function in experimental diabetic rats. Int. J. Pharm. Stud. Res. 2011, 2, 11–18. [Google Scholar]
- Ghosh, T.; Maity, T.K.; Singh, J. Antihyperglycemic Activity of Bacosine, a Triterpene from Bacopa monnieri, in Alloxan-Induced Diabetic Rats. Planta Med. 2011, 77, 804–808. [Google Scholar] [CrossRef] [PubMed]
- Castellano, J.M.; Guinda, A.; Delgado, T.; Rada, M.; Cayuela, J.A. Biochemical basis of the antidiabetic activity of oleanolic acid and related pentacyclic triterpenes. Diabetes 2013, 62, 1791–1799. [Google Scholar] [CrossRef] [PubMed]
- Vinoth-kumar, V.; Ramesh, N.; Bricey, A.A.; Selvi, V.V.T. Evaluation of lipid peroxidation and antioxidants activity of metformin in high fructose fed diet induced type II diabetic rats. Int. J. Pharm. Technol. 2010, 2, 456–464. [Google Scholar]
- Sani, M.F.; Kouhsari, S.M.; Moradabadi, L. Effects of three medicinal plants extracts in experimental diabetes: Antioxidant enzymes activities and plasma lipids profiles in comparison with metformin. Iran. J. Pharm. Res. 2012, 11, 897–903. [Google Scholar]
- Kumar, S.; Kumar, V.; Prakash, O.M. Antidiabetic and hypolipidemic activities of Kigelia pinnata flowers extract in streptozotocin induced diabetic rats. Asian Pac. J. Trop. Biomed. 2012, 2, 543–546. [Google Scholar] [CrossRef]
- Panserat, S.; Capilla, E.; Gutierrez, J.; Frappart, P.O.; Vachot, C.; Plagnes-Juana, E.; Aguirrea, P.; Brequea, J.; Kaushika, S. Glucokinase is highly induced and glucose-6-phosphatase poorly repressed in liver of rainbow trout (Oncorhynchus mykiss) by a single meal with glucose. Comp. Biochem. Physiol. Part B 2001, 128, 275–283. [Google Scholar] [CrossRef]
- Swanson, M.A. Glucose-6-phosphatase from Liver. In Methods in Enzymology; Colowick, S.P., Kaplan, N.O., Eds.; Academic Press: New York, NY, USA, 1995; pp. 541–543. [Google Scholar]
- Ong, K.C.; Khoo, H.E. Effects of myricetin on glycemia and glycogen metabolism in diabetic rats. Life Sci. 2000, 67, 1695–1705. [Google Scholar] [CrossRef]
- Sample Availability: Samples of the compound methyl-3β-hydroxylanosta-9,24-dien-21-oate are available from the authors.
© 2015 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mosa, R.A.; Cele, N.D.; Mabhida, S.E.; Shabalala, S.C.; Penduka, D.; Opoku, A.R. In Vivo Antihyperglycemic Activity of a Lanosteryl Triterpene from Protorhus longifolia. Molecules 2015, 20, 13374-13383. https://doi.org/10.3390/molecules200713374
Mosa RA, Cele ND, Mabhida SE, Shabalala SC, Penduka D, Opoku AR. In Vivo Antihyperglycemic Activity of a Lanosteryl Triterpene from Protorhus longifolia. Molecules. 2015; 20(7):13374-13383. https://doi.org/10.3390/molecules200713374
Chicago/Turabian StyleMosa, Rebamang A., Nkosinathi D. Cele, Sihle E. Mabhida, Samkelisiwe C. Shabalala, Dambudzo Penduka, and Andy R. Opoku. 2015. "In Vivo Antihyperglycemic Activity of a Lanosteryl Triterpene from Protorhus longifolia" Molecules 20, no. 7: 13374-13383. https://doi.org/10.3390/molecules200713374
APA StyleMosa, R. A., Cele, N. D., Mabhida, S. E., Shabalala, S. C., Penduka, D., & Opoku, A. R. (2015). In Vivo Antihyperglycemic Activity of a Lanosteryl Triterpene from Protorhus longifolia. Molecules, 20(7), 13374-13383. https://doi.org/10.3390/molecules200713374