Physico-Chemical Properties, Antioxidant Activity and Mineral Contents of Pineapple Genotypes Grown in China
Abstract
:1. Introduction
2. Results and Discussion
2.1. Quality Properties
Genotypes | Fruit Weight (g) | TSS (°Brix) | TA (% Citric Acid) | TSS/TA | pH | AsA (mg/100 g) |
---|---|---|---|---|---|---|
Comte de Paris | 1061.2de | 16.94hi | 0.66jk | 26.63de | 3.93bcdef | 10.07hi |
CPM | 1006.4def | 16.38jk | 0.91d | 18.04ij | 4.21ab | 16.59cd |
Fresh Premium | 783.4hij | 18.80d | 0.59m | 31.70c | 4.04abcd | 7.51no |
Giant Kew | 555.0k | 17.70fg | 1.12b | 15.86k | 4.15abc | 12.39of |
Kallara local | 895.3efgh | 17.40gh | 0.72gh | 24.18fg | 4.09abcd | 15.99d |
MacGregor | 1030.5def | 20.11b | 0.79f | 25.44ef | 4.14abc | 13.63e |
MD-2 | 1132.8cd | 16.12kl | 0.53opq | 30.26c | 4.13abc | 33.57a |
Nanglae | 910.0efgh | 16.20jk | 0.68hij | 24.21fg | 3.95abcde | 17.02c |
New Puket | 862.4fghi | 16.30jk | 0.54nopq | 31.36c | 4.10abcd | 13.99e |
Pattavia | 1151.0cd | 15.65m | 0.85e | 18.46hij | 3.81def | 9.10jk |
Pearl | 1290.3bc | 12.55o | 0.61klm | 20.55h | 3.61f | 6.70op |
Phetchaburi #2 | 1323.5b | 16.93hi | 0.71ghi | 23.82fg | 4.23a | 21.57b |
Puket | 945.9efgh | 16.43jk | 0.52pq | 31.72c | 4.02abcd | 8.72jkl |
Queensland Cayenne | 809.2ghij | 17.80efg | 0.69ghij | 25.63ed | 4.24a | 8.21klmn |
Ripley | 705.1ijk | 20.45a | 0.51q | 41.08a | 3.91abcde | 8.48jklm |
Smooth Cayenne #1 | 1137.6cd | 16.55ijk | 0.73g | 22.57g | 3.58f | 5.08q |
Smooth Cayenne #2 | 1072.5de | 14.45n | 1.23a | 11.75l | 3.86cdef | 7.68mn |
Sriracha | 1564.5a | 16.15kl | 0.81ef | 19.90hi | 3.85cdef | 10.82gh |
Tainon 6 | 1171.6bcd | 16.70ij | 0.61klm | 27.23de | 4.16abc | 11.09g |
Tainon 11 | 860.1k | 18.12ef | 0.68ij | 26.89de | 4.04abcd | 14.38e |
Tainon 13 | 1010.2def | 15.70lm | 0.46r | 33.97b | 3.90bcdef | 10.62gh |
Tainon 17 | 988.9defg | 18.20e | 0.57mnop | 31.80c | 3.99abcd | 9.39ij |
Tainon 18 | 1006.8def | 17.34gh | 0.62kl | 28.06d | 4.03abcd | 7.99lmn |
Tainon 19 | 1055.2de | 19.40c | 0.58lmn | 34.52b | 4.22ab | 16.93c |
Tainon 20 | 555.1k | 14.40n | 0.57lmno | 25.46ef | 3.69ef | 6.15p |
Tradsrithong | 647.4jk | 16.37jk | 0.97c | 17.03jk | 4.06abcd | 13.61e |
Means | 975.8 | 16.89 | 0.70 | 25.70 | 4.00 | 12.20 |
C.V. (%) | 24.10 | 10.25 | 26.78 | 25.94 | 4.59 | 48.70 |
2.2. Sugars and Organic Acids
Genotypes | Glucose | Fructose | Sucrose | Total Sugars | Citric | Malic | Quinic | Total Organ Acids |
---|---|---|---|---|---|---|---|---|
Comte de Paris | 33.60b | 31.41a | 60.65i | 125.66c | 3.37hij | 0.90fg | 0.50l | 5.09e |
CPM | 14.80m | 13.21p | 72.14e | 100.15jk | 4.21de | 0.74hi | 0.83ij | 5.78d |
Fresh Premium | 34.90a | 31.13a | 63.85gh | 129.88b | 4.03ef | 1.03cde | 1.26ab | 6.32c |
Giant Kew | 23.23g | 22.65g | 60.41i | 106.32i | 4.44cd | 0.53k | 0.93h | 5.90d |
Kallara local | 23.21g | 22.69g | 61.97ghi | 107.88hi | 3.46hi | 0.75hi | 0.96h | 5.16e |
MacGregor | 18.38l | 16.71m | 63.86gh | 98.94jkl | 3.03jkl | 0.71hi | 1.18bcd | 4.93ef |
MD-2 | 14.63m | 13.06p | 78.99d | 106.67i | 2.88klm | 1.05cd | 0.94h | 4.88efg |
Nanglae | 27.13c | 23.37d | 81.80c | 132.29b | 2.62m | 1.11cd | 1.29a | 5.15e |
New Puket | 21.61i | 19.00k | 83.81bc | 124.41cd | 4.63bc | 1.05cde | 1.22abc | 6.90b |
Pattavia | 25.06e | 23.81c | 52.12j | 100.99j | 2.18n | 0.98def | 0.92hi | 4.08h |
Pearl | 19.14jk | 17.23l | 45.22k | 81.59p | 2.63m | 0.51k | 0.52l | 3.66i |
Phetchaburi #2 | 25.69d | 23.02ef | 89.08a | 137.80a | 1.14p | 0.30l | 0.69k | 2.13k |
Puket | 22.60h | 20.24j | 89.46a | 132.30b | 4.80b | 1.05cd | 1.23abc | 7.08b |
Queensland Cayenne | 13.74n | 13.08p | 69.88ef | 96.71lm | 3.80fg | 0.80gh | 1.22abc | 5.83d |
Ripley | 19.52j | 15.99n | 50.71j | 86.22o | 2.78lm | 0.79gh | 0.94h | 4.51g |
Smooth Cayenne #1 | 24.25f | 21.03h | 64.76g | 110.05gh | 4.44cd | 1.61a | 1.02fgh | 7.07b |
Smooth Cayenne #2 | 14.27mn | 15.34o | 69.32ef | 98.93jkl | 3.08jkl | 0.94ef | 1.01fgh | 5.03e |
Sriracha | 21.31i | 17.05l | 52.29j | 90.65 n | 2.60m | 0.81gh | 1.13cde | 4.54fg |
Tainon 6 | 23.36g | 21.00hi | 68.89f | 112.25fg | 1.85o | 0.59jk | 1.08efg | 4.05h |
Tainon 11 | 18.84kl | 17.14l | 61.13hi | 97.11klm | 3.19ijk | 0.92f | 0.98gh | 5.09e |
Tainon 13 | 27.25c | 22.73fg | 51.86j | 101.83j | 1.41p | 0.60jk | 0.82ij | 2.82j |
Tainon 17 | 23.64g | 20.71i | 77.08d | 121.44e | 3.56gh | 0.77hi | 0.83ij | 5.17e |
Tainon 18 | 19.22kl | 16.09n | 78.79d | 114.11j | 1.97no | 0.59jk | 0.63k | 3.13j |
Tainon 19 | 26.23d | 23.28de | 46.34k | 95.85lm | 3.47hi | 0.88fg | 0.79j | 5.14e |
Tainon 20 | 27.55c | 23.25de | 71.16ef | 121.96de | 3.36hij | 0.69ij | 0.73jk | 4.78efg |
Tradsrithong | 27.15c | 25.35b | 85.38b | 137.89a | 5.78a | 1.21b | 1.10def | 8.09a |
Means | 22.70 | 20.37 | 67.34 | 110.38 | 3.26 | 0.84 | 0.95 | 5.09 |
C.V. (%) | 23.85 | 23.88 | 19.42 | 14.60 | 33.52 | 31.47 | 23.48 | 26.68 |
2.3. Total Phenolic and Flavonoid Contents and Antioxidant Activity
Genotypes | TPC (mg GAE/100 g FW) | TFC (mg RE/100 g FW) | DPPH (μmol TE/g FW) | TEAC (μmol TE/g FW) |
---|---|---|---|---|
Comte de Paris | 48.01jk | 34.50a | 4.25j | 5.71mn |
CPM | 31.48n | 8.50n | 3.68j | 4.10o |
Fresh Premium | 56.21efg | 17.24g | 8.08f | 9.28f |
Giant Kew | 41.94l | 11.60k | 3.79j | 5.41n |
Kallara local | 53.01gh | 6.19o | 5.60i | 7.04jk |
MacGregor | 55.15fgh | 18.81f | 13.55c | 12.24d |
MD-2 | 77.55a | 27.31b | 22.85a | 17.30a |
Nanglae | 53.72fgh | 11.67k | 6.84h | 6.85k |
New Puket | 53.61fgh | 12.36jk | 9.32e | 7.80i |
Pattavia | 37.48m | 10.31l | 5.60i | 7.23j |
Pearl | 56.84ef | 19.64e | 11.43d | 10.72e |
Phetchaburi #2 | 53.90fgh | 10.53l | 8.44f | 7.63i |
Puket | 47.83jk | 13.14j | 5.44i | 5.81m |
Queensland Cayenne | 70.69b | 20.10de | 14.76b | 14.24b |
Ripley | 54.20fgh | 26.07c | 9.99e | 13.11c |
Smooth Cayenne #1 | 49.45ij | 6.16o | 7.20gh | 6.55l |
Smooth Cayenne #2 | 53.43gh | 12.62j | 5.18i | 8.74h |
Sriracha | 47.71jk | 7.97n | 5.13i | 5.65mn |
Tainon 6 | 48.01jk | 16.24h | 7.04h | 7.59i |
Tainon 11 | 48.23jk | 11.59k | 9.88e | 7.59i |
Tainon 13 | 60.86cd | 20.67d | 11.69d | 10.85e |
Tainon 17 | 45.05k | 16.55gh | 7.826fg | 8.68h |
Tainon 18 | 58.77de | 9.26m | 6.44h | 8.93gh |
Tainon 19 | 62.43c | 12.62j | 11.03d | 9.10fg |
Tainon 20 | 55.19fgh | 13.91i | 5.12i | 6.39l |
Tradsrithong | 51.89hi | 10.48l | 6.99h | 6.49l |
Means | 52.79 | 14.85 | 12.20 | 8.35 |
CV% | 17.63 | 45.82 | 48.70 | 50.07 |
TPC | TFC | AsA | DPPH | TEAC | |
---|---|---|---|---|---|
TPC | 1 | ||||
TFC | 0.410 * | 1 | |||
AsA | 0.326 ns | 0.099 ns | 1 | ||
DPPH | 0.802 ** | 0.477 * | 0.527 ** | 1 | |
TEAC | 0.806 ** | 0.570 ** | 0.302 ns | 0.912 ** | 1 |
2.4. Mineral Contents
Genotypes | K (mg/100g) | Ca (mg/100g) | Mg (mg/100g) | Fe (mg/kg) | Zn (mg/kg) | Mn (mg/kg) | Cu (mg/kg) |
---|---|---|---|---|---|---|---|
Comte de Paris | 985op | 18.3lmn | 52.5n | 15.3n | 3.1lm | 75.3j | 3.8o |
CPM | 1227ijk | 40.9g | 75.1e | 27.8m | 8.5g | 77.5j | 4.7mn |
Fresh Premium | 1067n | 42.5g | 47.5pq | 146.8b | 3.8kl | 113.5f | 7.6hi |
Giant Kew | 2602a | 66.6d | 90.7d | 113.2c | 48.6a | 222.7a | 4.4no |
Kallara local | 1165lm | 53.3f | 51.3no | 9.9o | 4.7jk | 67.3k | 1.8p |
MacGregor | 907q | 79.0c | 49.4op | 15.2n | 5.8hi | 77.8j | 5.4lm |
MD-2 | 1261hi | 95.4b | 99.4b | 30.5m | 7.7g | 74.0j | 1.1p |
Nanglae | 1730d | 54.9f | 75.2e | 42.7l | 10.1f | 73.9j | 10.7bc |
New Puket | 1148m | 15.6no | 44.4r | 62.5hi | 12.2e | 43.9m | 9.3ef |
Pattavia | 1387g | 23.8j | 57.2lm | 66.0gh | 3.7l | 100.6g | 6.6jk |
Pearl | 1472f | 22.3jk | 60.8jk | 58.2ijk | 5.4hij | 94.7 | 9.8de |
Phetchaburi #2 | 1294h | 18.2lmn | 67.8g | 60.8hij | 6.1h | 32.3n | 11.4ab |
Puket | 1192klm | 17.1mn | 55.4m | 72.8ef | 5.3hij | 41.2m | 9.8de |
Queensland Cayenne | 1209jkl | 20.7kl | 60.4jk | 54.5k | 2.3m | 87.3i | 0.0q |
Ripley | 975p | 30.8i | 46.4qr | 38.5l | 8.2g | 137.7d | 4.3no |
Smooth Cayenne #1 | 1062n | 35.9h | 60.1jk | 56.3jk | 21.2c | 83.9i | 8.8fg |
Smooth Cayenne #2 | 1224ijk | 22.7jk | 65.6gh | 77.0e | 3.4l | 75.9j | 6.3jk |
Sriracha | 1224ijk | 20.3kl | 59.1kl | 70.8fg | 3.5l | 75.5j | 12.0a |
Tainon 6 | 2021b | 62.9e | 76.3e | 175.4a | 29.1b | 150.6c | 5.7kl |
Tainon 11 | 990op | 55.7f | 71.1f | 26.5m | 5.2hij | 95.5h | 0.0q |
Tainon 13 | 1844c | 61.1e | 64.4hi | 28.9m | 8.5g | 92.8h | 7.1ij |
Tainon 17 | 1639e | 5.4p | 62.5ij | 29.6m | 4.8ij | 161.6b | 8.1gh |
Tainon 18 | 1030no | 42.2g | 117.1a | 88.5d | 6.2h | 84.3g | 9.7de |
Tainon 19 | 1391g | 19.8klm | 52.9n | 61.3hij | 4.7ijk | 49.0l | 10.4cd |
Tainon 20 | 1241ijk | 126.2a | 93.7c | 56.5jk | 17.8d | 131.3e | 11.0bc |
Tradsrithong | 1250hij | 14.0o | 58.4kl | 63.3hi | 5.3hij | 40.8lm | 9.6de |
Means | 1328 | 41.0 | 66.0 | 59.6 | 9.4 | 90.8 | 6.9 |
CV% | 28.41 | 69.72 | 26.87 | 64.90 | 106.89 | 46.76 | 51.81 |
2.5. Cluster Analysis
3. Experimental
3.1. Chemicals
3.2. Plant Materials
3.3. Fruit Morphological and Quality Parameters
3.4. Extraction and Determination of Sugars and Organic Acids
3.5. Sample Extraction for Determination of Total Phenolics, Flavonoids and Antioxidant Activity
3.6. Determination of Total Phenolic and Flavonoid Contents
3.7. Determination of Antioxidant Activity
3.7.1. DPPH Free Radical Scavenging Capacity
3.7.2. Trolox Equivalent Antioxidant Capacity (TEAC)
3.8. Mineral Contents
3.9. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Rohrbach, K.G.; Leal, F.; d’Eeckenbrugge, G.C. History, distribution and world production. In The Pineapple: Botany, Production and Uses, 1st ed.; Bartholomew, D.P., Paull, R.E., Rohrbach, K.G., Eds.; CABI Publishing: New York, NY, USA, 2003; pp. 1–12. [Google Scholar]
- FAO. FAOSTAT, 2011. Available online: http://faostat.fao.org/site/567/default.aspx#ancor (accessed on 18 August 2013).
- Sun, G.M. Pineapple production and research in China. Acta Hortic. 2011, 902, 79–85. [Google Scholar]
- Paull, R.E.; Chen, C.C. Postharvest physiology, handling and storage of pineapple. In The Pineapple: Botany, Production and Uses; Bartholomew, D.P., Paull, R.E., Rohrbach, K.G., Eds.; CABI Publishing: New York, NY, USA, 2003; pp. 253–279. [Google Scholar]
- Brat, P.; Thi-Hoang, L.N.; Soler, A.; Reynes, M.; Brillouet, J.M. Physicochemical characterization of a new pineapple hybrid (FLHORAN41 Cv.). J. Agric. Food Chem. 2004, 52, 6170–6177. [Google Scholar] [CrossRef]
- Mhatre, M.; Tilak-Jain, J.; De, S.; Devasagayam, T.P.A. Evaluation of the antioxidant activity of non-transformed and transformed pineapple: A comparative study. Food Chem. Toxicol. 2009, 47, 2696–2702. [Google Scholar] [CrossRef]
- Chuenboonngarm, N.; Juntawong, N.; Engkagul, A.; Arirob, W.; Peyachoknakul, S. Changing in TSS, TA and sugar contents and sucrose synthase activity in ethephon-treated “Pattavia” pineapple fruit. Kasetsart. J. Nat. Sci. 2007, 41, 205–212. [Google Scholar]
- Montero-Calderón, M.; Rojas-Graü, M.A.; Martín-Belloso, O. Mechanical and chemical properties of Gold cultivar pineapple flesh (Ananas comosus). Eur. Food Res. Technol. 2010, 230, 675–686. [Google Scholar] [CrossRef]
- Nadzirah, K.Z.; Zainal, S.; Noriham, A.; Normah, I.; Siti Roha, A.M.; Nadya, H. Physico-chemical properties of pineapple variety N36 harvested and stored at different maturity stages. Int. Food Res. J. 2013, 20, 225–231. [Google Scholar]
- Chen, C.C.; Paull, R.E. Sugar metabolism and pineapple flesh translucency. J. Am. Soc. Hortic. Sci. 2000, 125, 558–562. [Google Scholar]
- Saradhuldhat, P.; Paull, R.E. Pineapple organic acid metabolism and accumulation during fruit development. Sci. Hortic. 2007, 112, 297–303. [Google Scholar] [CrossRef]
- Ramsaroop, R.E.S.; Saulo, A.A. Comparative consumer and physicochemical analysis of Del Monte Hawaii Gold and Smooth Cayenne pineapple cultivars. J. Food Qual. 2007, 30, 135–159. [Google Scholar] [CrossRef]
- Soler, A. Pineapple, 1st ed.; CIRAD-IRFA: Paris, France, 1992. [Google Scholar]
- Hodgson, A.S.; Hodgson, L.R. Pineapple juice. In Fruit Juice Processing Technology, 1st ed.; Nagy, S., Chen, C.S., Shaw, P.E., Eds.; Agscience, Inc.: Auburndale, FL, USA, 1993; pp. 378–435. [Google Scholar]
- Py, C.; Lacoeuihe, J.J.; Teisson, C. The Pineapple Cultivation and Uses, 1st ed.; Larose: Paris, France, 1987. [Google Scholar]
- Gawler, J.H. Constituents of canned Malayan pineapple juiced I. Amino acids, non-volatile acids, sugars, volatile carbonyl compounds and volatile acids. J. Sci. Food Agric. 1962, 13, 57–61. [Google Scholar] [CrossRef]
- Veberic, R.; Jurhar, J.; Mikulic-Petkovsek, M.; Stampar, F.; Schmitzer, V. Comparative study of primary and secondary metabolites in 11 cultivars of persimmon fruit (Diospyros kaki L.). Food Chem. 2010, 119, 477–483. [Google Scholar] [CrossRef]
- Hofer, M.; Herbinger, K.; Hecke, K.; Toplak, H.; Veberic, R.; Monschein, S.; Stampar, F.; Keppel, H.; Grill, D.; et al. Inhaltsstoffe alter Apfelsorten unter diatetischem Aspekt-Schwerpunkt diabetes. J. Für. Ernährungsmedizin. 2005, 7, 30–33. [Google Scholar]
- Veberic, R.; Jakopic, J.; Stampar, F.; Schmitzer, V. European elderberry (Sambucus nigra L.) rich in sugars, organic acids, anthocyanins and selected polyphenols. Food Chem. 2009, 114, 511–515. [Google Scholar] [CrossRef]
- Sturma, K.; Koronb, D.; Stampara, F. The composition of fruit of different strawberry varieties depending on maturity stage. Food Chem. 2003, 83, 417–422. [Google Scholar] [CrossRef]
- Liu, F.; Fu, S.; Bi, X.; Chen, F.; Liao, X.; Hu, X.; Wu, J. Physico-chemical and antioxidant properties of four mango (Mangifera indica L.) cultivars in China. Food Chem. 2013, 138, 396–405. [Google Scholar] [CrossRef]
- Chan, H.T.; Chenchin, E.; Vonnahme, P. Nonvolatile acids in pineapple juice. J. Agric. Food Chem. 1973, 21, 208–211. [Google Scholar] [CrossRef]
- Cáfimara, M.M.; Díez, C.; Torija, M.E.; Cano, N.P. HPLC determination of organic acids in pineapple juices and nectars. Z. Lebensm. Unters. Forsch. 1994, 198, 52–56. [Google Scholar] [CrossRef]
- Vieira, F.G.K.; Borges, G.D.S.C.; Copetti, C.; Amboni, R.D.D.M.C.; Denardi, F.; Fett, R. Physico-chemical and antioxidant properties of six apple cultivars (Malus domestica Borkh) grown in southern Brazil. Sci. Hortic. 2009, 122, 421–425. [Google Scholar] [CrossRef]
- Meng, J.F.; Fang, Y.L.; Qin, M.Y.; Zhuang, X.F.; Zhang, Z.W. Varietal differences among the phenolic profiles and antioxidant properties of four cultivars of spine grape (Vitis davidii Foex) in Chongyi County (China). Food Chem. 2012, 134, 2049–2056. [Google Scholar] [CrossRef]
- Fu, L.; Xu, B.; Xu, X.; Gan, R.; Zhang, Y.; Xia, E.; Li, H. Antioxidant capacities and total phenolic contents of 62 fruits. Food Chem. 2011, 129, 345–350. [Google Scholar] [CrossRef]
- Barros, H.R.M.; Ferreira, T.A.P.C.; Genovese, M.I. Antioxidant capacity and mineral content of pulp and peel from commercial cultivars of citrus from Brazil. Food Chem. 2012, 134, 1892–1898. [Google Scholar] [CrossRef] [Green Version]
- Gorinstein, S.; Zachwieja, Z.; Folta, M.; Barton, H.; Piotrowicz, J.; Zemser, M.; Weisz, M.; Trakhtenberg, S.; Màrtín-Belloso, O. Comparative contents of dietary fiber, total phenolics, and minerals in persimmons and apples. J. Agric. Food Chem. 2001, 49, 952–957. [Google Scholar]
- He, Y.D.; Zang, X.P.; Wei, C.B.; Sun, G.M. Changes of main nutrition element content in the fruit of pineapple during development. Guangdong Agric. Sci. 2008, 1, 18–20. [Google Scholar]
- Lu, X.H.; Sun, D.Q.; Mo, Y.W.; Xi, J.G.; Sun, G.M. Effects of post-harvest salicylic acid treatment on fruit quality and anti-oxidant metabolism in pineapple during cold storage. J. Hortic. Sci. Biotech. 2010, 85, 454–458. [Google Scholar]
- Bao, J.S.; Cai, Y.Z.; Wang, G.Y.; Corke, H. Anthocyanins, flavonols, and free radical scavenging activity of Chinese Bayberry (Myrica rubra) extracts and their color properties and stability. J. Agric. Food Chem. 2005, 53, 2327–2332. [Google Scholar] [CrossRef]
- Jia, Z.; Tang, M.; Wu, J. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1995. [Google Scholar]
- Sample Availability: Samples of the plant tissuse are available from the authors.
© 2014 by the authors. licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Lu, X.-H.; Sun, D.-Q.; Wu, Q.-S.; Liu, S.-H.; Sun, G.-M. Physico-Chemical Properties, Antioxidant Activity and Mineral Contents of Pineapple Genotypes Grown in China. Molecules 2014, 19, 8518-8532. https://doi.org/10.3390/molecules19068518
Lu X-H, Sun D-Q, Wu Q-S, Liu S-H, Sun G-M. Physico-Chemical Properties, Antioxidant Activity and Mineral Contents of Pineapple Genotypes Grown in China. Molecules. 2014; 19(6):8518-8532. https://doi.org/10.3390/molecules19068518
Chicago/Turabian StyleLu, Xin-Hua, De-Quan Sun, Qing-Song Wu, Sheng-Hui Liu, and Guang-Ming Sun. 2014. "Physico-Chemical Properties, Antioxidant Activity and Mineral Contents of Pineapple Genotypes Grown in China" Molecules 19, no. 6: 8518-8532. https://doi.org/10.3390/molecules19068518