Next Article in Journal
Surface-Functionalized Hyperbranched Poly(Amido Acid) Magnetic Nanocarriers for Covalent Immobilization of a Bacterial γ-Glutamyltranspeptidase
Previous Article in Journal
Microsomal Prostaglandin E Synthase-1 Deficiency Exacerbates Pulmonary Fibrosis Induced by Bleomycin in Mice
Open AccessArticle

High Efficiency Acetylcholinesterase Immobilization on DNA Aptamer Modified Surfaces

Department of Chemistry, Imperial College, London SW7 2AZ, UK
Author to whom correspondence should be addressed.
Molecules 2014, 19(4), 4986-4996;
Received: 26 February 2014 / Revised: 8 April 2014 / Accepted: 11 April 2014 / Published: 21 April 2014
(This article belongs to the Section Molecular Diversity)
We report here the in vitro selection of DNA aptamers for electric eel acetylcholinesterase (AChE). One selected aptamer sequence (R15/19) has a high affinity towards the enzyme (Kd = 157 ± 42 pM). Characterization of the aptamer showed its binding is not affected by low ionic strength (~20 mM), however significant reduction in affinity occurred at high ionic strength (~1.2 M). In addition, this aptamer does not inhibit the catalytic activity of AChE that we exploit through immobilization of the DNA on a streptavidin-coated surface. Subsequent immobilization of AChE by the aptamer results in a 4-fold higher catalytic activity when compared to adsorption directly on to plastic. View Full-Text
Keywords: aptamers; acetylcholinesterase; immobilization aptamers; acetylcholinesterase; immobilization
Show Figures

Figure 1

MDPI and ACS Style

Chumphukam, O.; Le, T.T.; Cass, A.E.G. High Efficiency Acetylcholinesterase Immobilization on DNA Aptamer Modified Surfaces. Molecules 2014, 19, 4986-4996.

Show more citation formats Show less citations formats

Article Access Map by Country/Region

Only visits after 24 November 2015 are recorded.
Search more from Scilit
Back to TopTop