Trifolium pratense L. as a Potential Natural Antioxidant
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Composition of T. pratense Essential Oil
Composition (%) | ||||||
---|---|---|---|---|---|---|
No | Component | a RI | TP1 | TP2 | TP3 | b Identification |
1. | Hexane | 604 | 1.70 | - | - | RI, MS |
2. | 2-Pentanonone | 680 | - | 6.66 | - | RI, MS |
3. | Methylbenzene | 769 | 2.14 | 2.57 | - | RI, MS |
4. | 1,3-Dimethylbenzene | 867 | 1.10 | - | - | RI, MS |
5. | 1,4-Dimethylbenzene | 883 | - | 2.01 | - | RI, MS |
6. | Pentanoic acid | 904 | - | 2.39 | 1.42 | RI, MS |
7. | 7-Octen-4-ol | 963 | 1.47 | 1.35 | 0.88 | MS |
8. | Beta-myrcene | 990 | 4.5 | - | - | RT, RI, MS |
9. | Cyclopropane | n.d. | 0.36 | - | - | RI, MS |
10. | Nonanal | 1108 | - | - | 1.72 | RI, MS |
11. | 2,4-Heptadienal | 1011 | - | - | 0.35 | RI, MS |
12. | 1-Bromocyclohexane | 1023 | - | - | 1.28 | RI, MS |
13. | Fenchyl alcohol | 1140 | 0.40 | - | - | MS |
14. | 1,2,6-Hexanetriol | n.d. | - | - | 0.56 | MS |
15. | p-Cymene | 1026 | 3.59 | - | - | RT, RI, MS |
16. | L-Limonene | 1030 | 3.86 | - | - | RI, MS |
17. | Benzaldehyde | 1045 | - | - | 5.52 | RI, MS |
18. | Isobornyl thiocyanoacetate | 1790 | 0.76 | - | - | MS |
19. | Decane | 1005 | 0.39 | 0.44 | - | RI, MS |
20. | Undecane | 1109 | - | 2.94 | - | RI, MS |
21. | Dihydrocarvone | 1201 | - | - | 6.47 | RI, MS |
22. | Beta-ionone | 1424 | 9.46 | 9.07 | 9.90 | RT, RI, MS |
23. | 10-Methylnonadecane | 1943 | 0.61 | - | - | RI, MS |
24. | 2(4H)-Benzofuranone, 5,6,7,7a-tetrahydro-4,4,7a-trimethyl | 1527 | 5.60 | 5.77 | 5.81 | MS |
25. | 3-hexen-1-ol | 1392 | 2.20 | - | - | MS |
26. | Megastigmatrienone | 1560 | - | - | 16.10 | RI, MS |
27. | Hexadecane | 1590 | 2.69 | - | - | RI, MS |
28. | Dodecanoic acid | 1568 | 0.54 | - | - | RI, MS |
29. | 2,6-Diisopropylnaphthalene | 1728 | 7.51 | 5.44 | 1.76 | RI, MS |
30. | Tetradecane | 1400 | 0.31 | - | - | RI, MS |
31. | Pentadecane | 1498 | - | - | 0.91 | RI, MS |
32. | Isopropyl myristate | 1830 | - | 0.51 | - | MS |
33. | Tetrahydroionone | 1470 | 1.56 | - | - | RI, MS |
34. | Hexahydrofarnesyl acetone | 1922 | 6.29 | 7.63 | - | RI, MS |
35. | Ocenol | 2068 | 0.39 | - | - | MS |
36. | Phytol | 2128 | - | 14.54 | 15.46 | RI, MS |
37. | 4-Bromo-1-methyl-5-nitroimidazole | n.d. | 0.46 | - | - | RI, MS |
38. | n-Hexadecanoic acid | 1983 | 3.22 | 2.09 | - | RI, MS |
39. | Pentacosane | 2493 | - | 3.81 | - | RI, MS |
Total identified | 92.00 | 85.61 | 53.69 | |||
Monoterpenes | 12.00 | - | 6.47 | |||
Sesquiterpenes | 29.90 | 30.86 | 23.91 | |||
Diterpenoids | 25.56 | 24.53 | 9.90 | |||
Aliphatic compounds | 13.34 | 20.20 | 4.85 | |||
Aromatic compounds | 11.20 | 10.02 | 8.56 |
2.2. In Vitro Antioxidant Activity of the Essential Oils
IC50 values for scavenging activity (µg/mL) | ||||
---|---|---|---|---|
Source | Radical species | LPx inhibition | ||
Essential oil | DPPH· | NO· | O2·- | LPx |
TP1 | 27.61 ± 0.12 | 16.03 ± 0.11 | 16.62 ± 0.23 | 9.35 ± 0.11 |
TP2 | 52.56 ± 0.28 | 25.31 ± 0.32 | 27.88 ± 0.34 | 15.27 ± 0.24 |
TP3 | 72.49 ± 0.14 | 41.69 ± 0.44 | 87.21 ± 0.12 | 36.81 ± 0.17 |
BHT | 14.31 ± 0.32 | 8.46 ± 0.14 | 10.46 ± 0.13 | 26.15 ± 0.92 |
BHA | 11.08 ± 0.28 | 6.31 ± 0.10 | 8.41 ± 0.12 | 36.08 ± 0.87 |
2.3. Antimicrobal Activity of T. pratense L. Essential Oil
Inhibition zone diameter | |||
---|---|---|---|
Bacterial strain | TP1 | TP2 | TP3 |
Escherichia coli | - | - | - |
Salmonella typhimurium | - | - | - |
Staphylococcus aureus | - | - | - |
Bacillus cereus | - | - | - |
3. Experimental
3.1. Chemical Reagents
3.2. Plant Material
3.3. Microwave Hydrodistillation of Essential Oil
3.4. GC-MS Analysis of T. pratense Essential Oil
3.5. In Vitro Antioxidant Activity Assays
3.5.1. The DPPH Assay
3.5.2. Neutralization of Super Oxide Anion Radical
3.5.3. Nitric Oxide Scavenging Activity
3.5.4. Lipid Peroxidation Assay
3.6. Determination of Antimicrobial Activity of T. pratense Essential Oil
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Buchanan, B.B.; Gruissem, W.; Jones, L.R. Biochemistry & Molecular Biology of Plants; American Society of Plant Physiologists: Rockville, MD, USA, 2002; pp. 216–223. [Google Scholar]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Mejri, J.; Abderrabba, M.; Mejri, M. Chemical composition of the essential oil of Ruta chalepensis L.: Influence of drying, hydro-distillation duration and plant parts. Ind. Crops Prod. 2010, 32, 671–673. [Google Scholar] [CrossRef]
- Dorman, H.J.D.; Deans, S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 2000, 88, 308–316. [Google Scholar] [CrossRef]
- Leung, A.Y.; Foster, S. Red Clover Tops. In Encyclopedia of Common Natural Ingredients Used in Food, Drugs, and Cosmetics; Musselman, J.L., Ed.; John Wiley & Sons Inc.: New York, NY, USA, 1996; pp. 177–178. [Google Scholar]
- Howes, J.B.; Howes, L.G. Content of isoflavone-containing preparations. Med. J. Aust. 2002, 176, 135–136. [Google Scholar]
- Booth, N.L.; Overk, C.R.; Yao, P.; Totura, S.; Deng, Y.; Hedayat, A.S.; Bolton, J.L.; Pauli, G.F.; Farnsworth, N.R. Seasonal variation of Red clover (Trifolium pratense L.) isoflavones and estrogenic activity. J. Agric. Food Chem. 2006, 54, 1277–1282. [Google Scholar] [CrossRef]
- Kami, T. Qualitative and quantitative analyses of the essential oils of red and ladino white clovers. J. Agric. Food Chem. 1978, 26, 1194–1197. [Google Scholar] [CrossRef]
- Srinivas, S.R. Volatile constituents in alfalfa and red clover extracts. Rev. Food Sci. 1988, 18, 343–353. [Google Scholar]
- Buttery, R.; Kamm, J.; Ling, L. Volatile components of red clover leaves, flowers, and seed pods: Possible insect attractants. J. Agric. Food Chem. 1984, 32, 254–256. [Google Scholar] [CrossRef]
- Figueiredo, R.; Rodrigues, A.I.; do Ceu Costa, M. Volatile composition of red clover (Trifolium pratense L.) forages in Portugal: The influence of ripening stage and ensilage. Food Chem. 2007, 104, 1445–1453. [Google Scholar] [CrossRef]
- Holopainen, J.K. Multiple functions of inducible plant volatiles. Trends Plant Sci. 2004, 9, 529–533. [Google Scholar] [CrossRef]
- Pichersky, E.; Gershenzon, J. The formation and function of plant volatiles: Perfumes for pollinator attraction and defense. Curr. Opin. Plant Biol. 2002, 3, 237–243. [Google Scholar] [CrossRef]
- Salas, J.J.; Sánchez, C.; García-González, D.L.; Aparicio, R. Impact of the supression of lipoxygenase and hydroperoxide lyase on the quality of the green odor in green leaves. J. Agric. Food Chem. 2005, 53, 1648–1655. [Google Scholar] [CrossRef]
- Dudareva, N.; Pichersky, E.; Gershenzon, J. Biochemistry of plant volatiles. Plant Physiol. 2004, 135, 1893–1902. [Google Scholar] [CrossRef]
- Vuorinen, T.; Reddy, G.V.P.; Nerg, A.M.; Holopainen, J. Monoterpene and herbivore-induced emissions from cabbage plants grown at elevated atmospheric CO2 concentration. Atmos. Environ. 2004, 38, 675–682. [Google Scholar] [CrossRef]
- Biehl, B.; Ziegleder, G. Cocoa: Chemistry of Processing. In Encyclopedia of Food Sciences and Nutrition, 2nd ed.; Caballero, B., Finglas, P., Trugo, L., Eds.; Academic Press: New York, NY, USA, 2003; pp. 1436–1448. [Google Scholar]
- Vianna, E.; Ebeler, S.E. Monitoring ester formation in grape juice fermentation using solid phase microextraction coupled with gas chromatography–mass spectrometry. J. Agric. Food Chem. 2001, 49, 589–595. [Google Scholar] [CrossRef]
- Pedraza-Chaverri, J.; Cárdenas-Rodríguez, N.; Orozco-Ibarra, M.; Pérez-Rojas, J.M. Medicinal properties of mangosteen (Garcinia mangostana). Food Chem. Toxicol. 2008, 46, 3227–3239. [Google Scholar] [CrossRef]
- Đorđević, V.B.; Pavlović, D.D.; Kocić, G.M. Biohemija Slobodnih Radikala; (in Serbian). Medicinski fakultet: Niš, Serbia, 2002; pp. 132–138. [Google Scholar]
- Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine; Clarendon Press: Oxford, MS, USA, 1986; pp. 183–189. [Google Scholar]
- Kaurinovic, B.; Popovic, M. Liposomes as a Tool to Study Lipid Peroxidation. In Lipid Peroxidation; Catala, A., Ed.; InTech: Rijeka, Croatia, 2012; pp. 155–180. [Google Scholar]
- Knobloch, K.; Pauli, A.; Iberl, B.; Weigand, H.; Weis, N. Antibacterial and antifungal properties of essential oil components. J. Essent. Oil Res. 1989, 1, 119–128. [Google Scholar] [CrossRef]
- Cristani, M.; D’Arrigo, M.; Mandalari, G.; Castelli, F.; Sarpietro, M.G.; Micieli, D.; Venuti, V.; Bisignano, G.; Saija, A.; Trombetta, D. Interaction of four monoterpenes contained in essential oils with model membranes: Implications for their antibacterial activity. J. Agric. Food Chem. 2007, 55, 6300–6308. [Google Scholar] [CrossRef]
- Bonjor, G.H.; Aghighi, S.; Karimi, N.A. Antibacterial and antifungal survey in plants used in indigenous herbal-medicine of south east regions of Iran. J. Biol. Sci. 2004, 4, 405–412. [Google Scholar] [CrossRef]
- Holmgren, P.K.; Holmgren, N.H. Additions to index herbariorum (Herbaria), Editions 8-fourteenth series. Taxon 2003, 52, 385–389. [Google Scholar]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectrometry; Allured Pub Corp: Carol Stream, IL, USA, 2001. [Google Scholar]
- Soler-Rivas, C.; Espín, J.C.; Wichers, H.J. An easy and fast test to compare total free radical scavenger capacity of foodstuf fs. Phytochem. Anal. 2000, 11, 330–338. [Google Scholar] [CrossRef]
- Cos, P.; Ying, L.; Callome, M.; Hu, P.; Cimanga, K.; van Poel, B.; Pieters, L.; Vlietinick, J.; van den Berghe, D. Structure-activity relationship and classification of flavonoids as inhibitors of Xanthine oxidase and superoxide scavengers. J. Nat. Prod. 1998, 61, 71–76. [Google Scholar] [CrossRef]
- Green, C.; Wagner, A.; Glogowski, J.; Skipper, I.; Wishnok, S.; Tannenbaum, R. Analysis of nitrat, nitrit and [15N] nitrit in biological fluids. Anal. Biochem. 1982, 126, 131–138. [Google Scholar] [CrossRef]
- Lesjak, M.M.; Beara, I.N.; Orcic, D.Z.; Anackov, G.T.; Balog, K.J.; Franciskovic, M.M.; Mimica_Dukic, N.M. Juniperus sibirica Burgsdorf. as a novel source of antioxidant and anti-inflammatory agents. Food Chem. 2011, 124, 850–856. [Google Scholar] [CrossRef]
- Sample Availability: Samples of the compounds of Trifolium pratense L. extracts are available from the authors.
© 2014 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Vlaisavljevic, S.; Kaurinovic, B.; Popovic, M.; Djurendic-Brenesel, M.; Vasiljevic, B.; Cvetkovic, D.; Vasiljevic, S. Trifolium pratense L. as a Potential Natural Antioxidant. Molecules 2014, 19, 713-725. https://doi.org/10.3390/molecules19010713
Vlaisavljevic S, Kaurinovic B, Popovic M, Djurendic-Brenesel M, Vasiljevic B, Cvetkovic D, Vasiljevic S. Trifolium pratense L. as a Potential Natural Antioxidant. Molecules. 2014; 19(1):713-725. https://doi.org/10.3390/molecules19010713
Chicago/Turabian StyleVlaisavljevic, Sanja, Biljana Kaurinovic, Mira Popovic, Maja Djurendic-Brenesel, Bojana Vasiljevic, Dragoljub Cvetkovic, and Sanja Vasiljevic. 2014. "Trifolium pratense L. as a Potential Natural Antioxidant" Molecules 19, no. 1: 713-725. https://doi.org/10.3390/molecules19010713
APA StyleVlaisavljevic, S., Kaurinovic, B., Popovic, M., Djurendic-Brenesel, M., Vasiljevic, B., Cvetkovic, D., & Vasiljevic, S. (2014). Trifolium pratense L. as a Potential Natural Antioxidant. Molecules, 19(1), 713-725. https://doi.org/10.3390/molecules19010713