Chemical Composition, Cytotoxic and Antimicrobial Activity of Essential Oils from Cassia bakeriana Craib. against Aerobic and Anaerobic Oral Pathogens
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Composition of the Essential Oils
Compound | AIReference | AI(Calculated) | Identificationmethod | Composition (%) | ||
---|---|---|---|---|---|---|
Wood | Bark | Leaves | ||||
Hexanal | 801 | 806 | a, b, c | 1.13 | 0.82 | - |
Furfural | 828 | 830 | a, b, c | 1.27 | - | - |
(E)-Hex-2-enal | 846 | 847 | a, b, c | - | - | 10.48 |
(Z)-Hex-3-en-1-ol | 850 | 851 | a, b, c | 1.56 | 6.73 | 34.90 |
Hex-2-en-1-ol | 854 | 855 | a, b, c | - | - | 0.95 |
Hexan-1-ol | 863 | 862 | a, b, c | 1.03 | 0.72 | - |
Octanal | 998 | 1001 | a, b, c | - | 0.87 | - |
Hex-3-en-1-ol, acetate | 1004 | 1007 | a, b, c | - | - | 8.68 |
Phenylacetaldehyde | 1036 | 1038 | a, b, c | 3.76 | - | - |
Octan-1-ol | 1063 | 1065 | a, b, c | - | 2.82 | - |
Linalool | 1097 | 1097 | a, b, c | - | - | 3.55 |
Nonanal | 1100 | 1099 | a, b, c | - | 14.42 | - |
Nonanol | 1165 | 1170 | a, b, c | 0.98 | ||
Methyl salicylate | 1190 | 1193 | a, b, c | - | 1.27 | - |
Octanoic acid (caprylic acid) | 1192 | 1196 | a, c, d | - | 1.53 | - |
Decanal | 1201 | 1201 | a, b, c | - | 0.89 | - |
Cis-dec-2-enal | 1261 | 1262 | a, b, c | - | 6.17 | - |
Nonanoic acid (pelargonic acid) | 1293 | 1291 | a, c, d | - | 5.77 | - |
4-Vinylguaiacol | 1309 | 1314 | a, b, c | - | - | 2.41 |
4-propylguaiacol | 1374 | 1367 | a, b, d | 3.92 | - | - |
(E)-Nerolidol | 1561 | 1564 | a, b, c | - | 4.70 | - |
Dodecanoic acid (lauric acid) | 1565 | 1566 | a, c, d | - | 1.92 | 0.93 |
Tridecanoic acid (tridecylic acid) | 1662 | 1660 | a, c, d | - | 0.79 | - |
Tetradecanoic acid (myristic acid) | 1770 | 1764 | a, c, d | - | 1.45 | - |
N. I. | - | - | - | 0.93 | - | - |
Hexadecanoic acid (palmitic acid) | 1959 | 1958 | a, c, d | 58.14 | 34.80 | 5.89 |
N. I. | - | - | - | 1.05 | - | - |
Phytol | 2114 | 2110 | a, c, d | - | - | 4.45 |
(Z,Z)-Octadeca-9,12-dienoic acid (linoleic acid) | 2132 | 2149 | a, c, d | 8.46 | 2.09 | - |
(Z)-Octadec-9-enoic acid (oleic acid) | 2132 | 2149 | a, c, d | 15.22 | 2.20 | - |
Octadecanoic acid (stearic acid) | 2158 | 2155 | a, c, d | 3.53 | 0.72 | - |
Tricosane | 2300 | 2300 | a, b, c | - | 0.69 | 1.03 |
Tetracosane | 2400 | 2400 | a, b, c | - | - | 1.14 |
N. I. | - | - | - | - | - | 2.38 |
Pentacosane | 2500 | 2500 | a, b, c | - | 1.33 | - |
Heptacosane | 2700 | 2700 | a, b, c | - | - | 8.27 |
N. I. | - | - | - | - | 3.62 | - |
Octacosane | 2800 | 2800 | a, b, c | - | 0.74 | 2.07 |
N. I. (hydrocarbon) | - | - | - | - | 2.06 | 12.57 |
N. I. (hydrocarbon) | - | - | - | - | 0.93 | - |
Total identified (%) | 98.02 | 93.39 | 86.05 |
Functional groups | Wood | Bark | Leaves |
---|---|---|---|
Alcohols | 2.59 | 11.15 | 37.15 |
Aldehydes | 6.16 | 23.17 | 10.48 |
Esters | - | - | 8.68 |
Oxygenated monoterpenes | - | - | 3.55 |
Oxygenated sesquiterpenes | - | 4.70 | - |
Oxygenated diterpenes | - | - | 4.45 |
Long chain alkanes | - | 2.76 | 12.78 |
Phenolics | 3.92 | - | 2.41 |
Fatty acids | 85.35 | 51.27 | 6.82 |
N. I. compounds | 1.98 | 6.61 | 13.95 |
2.2. Antimicrobial Activity of Essential Oils
Microorganisms | Minimum inhibitory concentration (MIC) – μg·mL−1 | ||||
---|---|---|---|---|---|
Samples of Essential Oils | |||||
Leaves | Bark | Wood | a CHD | ||
Anaerobic | c F. nucleatum (ATCC 25586) | 1000 | 1000 | 2000 | 0.922 |
b A. naeslundii (ATCC 19039) | 62.5 | 125 | 1000 | 1.844 | |
c P. gingivalis(ATCC 48417) | 125 | 125 | 500 | 3.68 | |
c B. fragilis (ATCC 25285) | 62.5 | 62.5 | 1000 | 1.844 | |
Aerobic | b S. sanguinis (ATCC 10556) | 125 | 125 | 1000 | 3.68 |
b S. mitis (ATCC 49456) | 62.5 | 62.5 | 500 | 3.68 | |
b S. mutans (ATCC 25175) | 62.5 | 62.5 | 2000 | 0.922 | |
c A. actinomycetemcomitans (ATCC 43717) | 125 | 125 | 1000 | 14.7 | |
Cytotoxic activity EC50 – μg·mL−1 Vero cells (ATCC CCL 81) | 153 ± 13 | 119 ± 2 | 93 ± 3 | ---- |
3. Experimental
3.1. Plant Material
3.2. Essential Oil Isolation
3.3. Analysis of the Essential Oils
3.4. Identification of the Constituents
3.5. Microbial Strains
3.6. Antimicrobial Activity
3.7. Cytotoxic Activity
3.8. Statistical Analysis
4. Conclusions
Acknowledgments
References
- Lorenzi, H.; Souza, H.M.; Torres, M.A.V.; Bacher, L.B. Árvores Exóticas no Brasil - madeireiras, ornamentais e exóticas; Editora Plantarum: Nova Odessa, São Paulo, Brazil, 2003; p. 166. [Google Scholar]
- Júnior, C.V.; Rezende, A.; Silva, D.H.S.; Castro-Gambôa, I.; Bolzani, V.S. Aspectos químicos, biológicos e etnofarmacológicos do gênero Cassia. Quim. Nova 2006, 29, 1279–1286. [Google Scholar] [CrossRef]
- Gritsanapan, W.; Phadungrakwitya, R.; Nualkaew, S. Investigation of Alternative Anthraquinone Sources from Cassia spp. In Proceedings of International Conference on Development of Botanicals, Kolkata, India, 25–26 February 2005; p. 595.
- Xiong, L.; Peng, C.; Zhou, Q.M.; Wan, F.; Xie, X.F.; Guo, L.; Li, X.H.; He, C.J.; Dai, O. Chemical composition and antibacterial activity of assential oils from different parts of Leonurus japonicus Houtt. Molecules 2013, 18, 963–973. [Google Scholar] [CrossRef]
- Lang, G.; Buchbauer, G. A review on recent research results (2008–2010) on essential oils as antimicrobials and antifungals. A review. Flav. Frag. J. 2012, 27, 13–39. [Google Scholar] [CrossRef]
- Takarada, K.; Kimizuka, R.; Takarashi, R.; Honma, K.; Okuda, K.; Kato, T. A comparison of the antibacterial efficacies of essential oils against oral pathogens. Oral Microbiol. Immunol. 2004, 19, 61–64. [Google Scholar] [CrossRef]
- Botelho, M.A.; Nogueira, N.A.; Bastos, G.M.; Fonseca, S.G.; Lemos, T.L.; Matos, F.J.; Montenegro, D.; Heukelbach, J.; Rao, V.S.; Brito, G.A. Antimicrobial activity of the essential oil from Lippia sidoides, carvacrol and thymol against oral pathogens. Braz. J. Med. Biol. Res. 2007, 40, 349–356. [Google Scholar] [CrossRef]
- Cha, J.D. Chemical composition and antibacterial activity against oral bacteria by the essential oil of Artemisia iwayomogi. J. Bacteriol. Virol. 2007, 37, 129–136. [Google Scholar] [CrossRef]
- Chang, R.; Morais, S.A.L.; Nascimento, E.A.; Cunha, L.C.S.; Rocha, E.O.; Aquino, F.J.T.; Souza, M.G.M.; Cunha, W.R.; Martins, C.H.G. Essential oil composition and antioxidant and antimicrobial properties of Campomanesia pubescens O. Berg, Native of Brazilian Cerrado. Lat. Am. J. Pharm. 2011, 30, 1843–1848. [Google Scholar]
- Si, W.; Gong, J.; Tsao, R.; Zhou, T.; Yu, H.; Poppe, C.; Johnson, R.; Du, Z. Antimicrobial activity of essential oils and structurally related synthetic food additives towards selected pathogenic and beneficial gut bacteria. J. Appl. Microb. 2006, 100, 296–305. [Google Scholar] [CrossRef]
- Agnaniet, H.; Bikanga, R.; Bessière, J.M.; Menut, C. Essential oil constituents of Cassia alata (L.) from Gabon. J. Essent. Oil Res. 2005, 17, 410–412. [Google Scholar] [CrossRef]
- Ogunwande, I.A.; Flamini, G.; Cioni, P.L.; Omikorede, O.; Azeez, R.A.; Ayodele, A.A.; Kamil, Y.O. Aromatic plants growing in Nigeria: Essential oil constituents of Cassia alata (Linn.) Roxb. and Helianthus annuus L. Rec. Nat. Prod. 2010, 4, 211–217. [Google Scholar]
- Tzakou, O.; Loukis, A.; Said, A. Essential oil from the flowers and leaves of Cassia fistula L. J. Essent. Oil Res. 2007, 19, 360–361. [Google Scholar] [CrossRef]
- Aas, J.A.; Paster, J.B.; Stokes, N.L.; Olsen, I.; Dewhirst, E.F. Defining the normal bacterial flora of the oral cavity. J. Clin. Microbiol. 2005, 43, 5721–5732. [Google Scholar] [CrossRef]
- Lima, R.K. Essential Oils of Myristica fragrans Houtt. and of Salvia microphylla H.B.K.: Chemical Characterization, Biological And Antioxidant Activity. Ph.D. Thesis, Universidade Federal de Lavras, Lavras, Brazil, 12 December 2008. [Google Scholar]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Dorman, H.J.D.; Deans, S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 2000, 88, 308–316. [Google Scholar] [CrossRef]
- Kollanoor, A.; Vasudevan, P.; Nair, M.K.M.; Hoagland, T.; Venkitanarayanan, K. Inactivation of bacterial fish pathogens by medium-chain lipid molecules (caprylic acid, monocaprylin and sodium caprylate). Aquaculture Res. 2007, 38, 1293–1300. [Google Scholar] [CrossRef]
- Ouattara, B.; Simard, R.E.; Holley, R.A.; Piette, G.J.P.; Bégin, A. Antibacterial activity of selected fatty acids and essential oils against six meat spoilage organisms. Int. J. Food Microbial. 1997, 37, 155–162. [Google Scholar] [CrossRef]
- Patrignani, F.; Iucci, L.; Belletti, N.; Gardini, F.; Guerzoni, M.E.; Lanciotti, R. Effects of sub-lethal concentrations of hexanal and 2-(E)-hexenal on membrane fatty acid composition and volatile compounds of Listeria monocytogenes, Staphylococcus aureus, Salmonella enteritidis and Escherichia coli. Int. J. Food Microbial. 2008, 123, 1–8. [Google Scholar] [CrossRef]
- Chung, J.Y.; Choo, J.H.; Lee, M.H.; Hwang, J.H. Anticariogenic activity of macelignan isolated from Myristica fragrans (nutmeg) against Streptococcus mutans. Phytomedicine 2006, 13, 261–266. [Google Scholar] [CrossRef]
- Skaltsa, H.D.; Lazzari, D.M.; Mavromati, A.S.; Tiligada, E.A.; Constantinidis, T.A. Composition and antimicrobial activity of the essential oil of Scutellaria albida ssp. albida from Greece. Planta Med. 2000, 66, 672–674. [Google Scholar] [CrossRef]
- Togashi, N.; Shiraishi, A.; Nishizaka, M.; Matsuoka, K.; Endo, K.; Hamashima, H.; Inoue, Y. Antibacterial activity of long-chain fatty alcohols against Staphylococcus aureus. Molecules 2007, 12, 139–148. [Google Scholar] [CrossRef]
- Rios, J.L.; Recio, M.C. Medicinal plants and antimicrobial activity. J. Ethnopharmacol. 2005, 100, 80–84. [Google Scholar] [CrossRef]
- Case, R.J.; Franzblau, S.G.; Wang, Y.; Cho, S.H.; Soejarto, D.D.; Pauli, G.F. Ethnopharmacological evaluation of the informant consensus model on anti-tuberculosis claims among the Manus. J. Ethnopharmacol. 2006, 106, 82–89. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy, 4th ed; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; p. 803. [Google Scholar]
- NIST Standard Reference Data. Available online: http://webbook.nist.gov/chemistry/name-ser.html (accessed on 12 October 2012).
- Carvalho, T.C.; Simão, M.R.; Ambrósio, S.R.; Furtado, N.A.; Veneziani, R.C.; Heleno, V.C.; da Costa, F.B.; Gomes, B.P.; Souza, M.G.; Reis, R.B.; et al. Antimicrobial activity of diterpenes from Viguiera arenaria against endodontic bacteria. Molecules 2011, 16, 543–551. [Google Scholar] [CrossRef]
- National Committee for Clinical Laboratory Standards (NCCLS). NCCLS document M7-A6 - Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; NCCLS: Wayne, PA, USA, 2003. [Google Scholar]
- Gómez-Barrio, A.; Veja, C.; Escario, J.A.; Rolón, M. Development of resazurin microtiter assay for drug sensibility testing of Trypanosoma cruzi epimastigotes. Parasitology Res. 2006, 99, 103–107. [Google Scholar] [CrossRef]
- Chibale, K.; Chouteau, F.; Lategan, C.A.; Maharaj, V.J.; Pillay, P.; Smith, P.J.; Vleggaar, R. Antiplasmodial hirsutinolides from Vernonia staehelinoides and their utilization towards a simplified pharmacophore. Phytochemistry 2007, 68, 1200–1205. [Google Scholar] [CrossRef]
- Sample Availability: Samples of the essential oils of Cassia bakeriana are available from the authors.
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Cunha, L.C.S.; De Morais, S.A.L.; Martins, C.H.G.; Martins, M.M.; Chang, R.; De Aquino, F.J.T.; De Oliveira, A.; Moraes, T.D.S.; Machado, F.C.; Da Silva, C.V.; et al. Chemical Composition, Cytotoxic and Antimicrobial Activity of Essential Oils from Cassia bakeriana Craib. against Aerobic and Anaerobic Oral Pathogens. Molecules 2013, 18, 4588-4598. https://doi.org/10.3390/molecules18044588
Cunha LCS, De Morais SAL, Martins CHG, Martins MM, Chang R, De Aquino FJT, De Oliveira A, Moraes TDS, Machado FC, Da Silva CV, et al. Chemical Composition, Cytotoxic and Antimicrobial Activity of Essential Oils from Cassia bakeriana Craib. against Aerobic and Anaerobic Oral Pathogens. Molecules. 2013; 18(4):4588-4598. https://doi.org/10.3390/molecules18044588
Chicago/Turabian StyleCunha, Luís C. S., Sérgio A. L. De Morais, Carlos H. G. Martins, Mário M. Martins, Roberto Chang, Francisco J. T. De Aquino, Alberto De Oliveira, Thaís Da S. Moraes, Fabrício C. Machado, Cláudio V. Da Silva, and et al. 2013. "Chemical Composition, Cytotoxic and Antimicrobial Activity of Essential Oils from Cassia bakeriana Craib. against Aerobic and Anaerobic Oral Pathogens" Molecules 18, no. 4: 4588-4598. https://doi.org/10.3390/molecules18044588
APA StyleCunha, L. C. S., De Morais, S. A. L., Martins, C. H. G., Martins, M. M., Chang, R., De Aquino, F. J. T., De Oliveira, A., Moraes, T. D. S., Machado, F. C., Da Silva, C. V., & Do Nascimento, E. A. (2013). Chemical Composition, Cytotoxic and Antimicrobial Activity of Essential Oils from Cassia bakeriana Craib. against Aerobic and Anaerobic Oral Pathogens. Molecules, 18(4), 4588-4598. https://doi.org/10.3390/molecules18044588