Effect of a Combination of Low Level Ozone and Metal Ions on Reducing Escherichia coli O157:H7 and Listeria monocytogenes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Low Level Ozonated Water on E. coli O157:H7 and L. monocytogenes
Strains | |||||
---|---|---|---|---|---|
Escherichia coli O157:H7 | Listeria. monocytogenes | ||||
Time | 10 min | 30 min | 10 min | 30 min | |
Dosage | |||||
0 ppm | 10.30 ± 0.97 a | 10.30 ± 1.14 a | 9.67 ± 0.64 a | 9.67 ± 0.64 a | |
0.1 ppm | 10.44 ± 1.37 a | 9.63 ± 0.61 ab | 7.90 ± 0.63 a | 8.84 ± 0.36 a | |
0.2 ppm | 9.29 ± 0.20 ab | 9.04 ± 0.40 b | 6.27 ± 0.19 b | 7.65 ± 0.67 b | |
0.4 ppm | 8.40 ± 0.16 Ab | 7.46 ± 0.61 Bc | 5.27 ± 0.62 c | 5.83 ± 0.35 c | |
Pr > F | * | ** | ** | ** |
2.2. Effect of a Combination of Low Level Ozonated Water and Starch Solution
Strains | |||||
---|---|---|---|---|---|
Escherichia coli O157:H7 | Listeria. monocytogenes | ||||
Time | 10 min | 30 min | 10 min | 30 min | |
Dosage | |||||
0 ppm | 10.32 ± 0.97 a | 10.32 ± 0.97 a | 9.68 ± 0.65 a | 9.68 ± 0.65 a | |
0.1 ppm | 10.19 ± 0.94 a | 9.87 ± 0.80 a | 9.50 ± 0.60 a | 9.25 ± 0.50 a | |
0.2 ppm | 9.49 ± 0.33 b | 9.21 ± 0.26 a | 8.45 ± 0.27 b | 7.86 ± 0.54 b | |
0.4 ppm | 8.82 ± 0.13 Bb | 7.69 ± 0.54 Ab | 7.52 ± 0.43 Bc | 6.23 ± 0.49 Ac |
2.3. Effect of a Combination of Low Level Ozonated Water and Metal Ions
Strains | |||||
---|---|---|---|---|---|
Escherichia coli O157:H7 | Listeria. monocytogenes | ||||
Time | 10 min | 30 min | 10 min | 30 min | |
Dosage | |||||
0 ppm | 10.24 ± 0.95 a | 10.24 ± 0.95 a | 9.12 ± 0.09 a | 9.12 ± 0.09 a | |
0.1 ppm | 10.03 ± 1.04 a | 9.02 ± 0.07 b | 8.94 ± 0.08 Aa | 8.02 ± 0.53 Bb | |
0.2 ppm | 8.26 ± 0.07 Ab | 7.64 ± 0.48 Bc | 7.18 ± 0.35 b | 6.59 ± 0.69 c | |
0.4 ppm | 6.63 ± 0.87 c | 5.53 ± 0.89 d | 5.67 ± 0.67 c | 4.83 ± 0.47 d |
3. Experimental
3.1. Preparation of Water Components
3.2. Preparation of Bacterial Inoculation
3.3. Ozonation of Inoculated Microorganisms
3.4. Microbiological Sampling
3.5. Statistical Analysis
4. Conclusions
Conflicts of Interest
References and Notes
- Kim, K.I.; Kang, S.N.; Lee, O.H.; Park, J.H. Sensitivities of Salmovella typhimurium and Staphylococcus aureus to ozonation in the presence of soluble starch and metal ion complex. Food Sci. Biotechnol. 2008, 17, 842–845. [Google Scholar]
- Kang, S.N.; Jang, A.; Lee, S.O.; Min, J.S.; Kim, I.S.; Lee, M. Effect of organic acids on microbial populations and Salmonella typhimurium in pork loins. Asian-Aust. J. Anim. Sci. 2003, 16, 96–99. [Google Scholar]
- Delaquis, P.J.; Fukumoto, L.R.; Toivonen, P.M.A; Cliff, M.A. Implications of wash water chlorination and temperature for the microbiological and sensory properties of fresh-cut iceberg lettuce. Postharvest Biol. Technol. 2004, 31, 81–91. [Google Scholar] [CrossRef]
- Do, J.R.; Kang, S.N.; Kim, K.J.; Jo, J.H.; Lee, S.W. Antimicrobial and antioxidant activities and phenolic contents in the water extract of medicinal plants. Food Sci. Biotechnol. 2004, 13, 640–645. [Google Scholar]
- Fawell, J. Risk assessment case study-Chloroform and related substances. Food Chem. Toxicol. 2000, 38, S91–S95. [Google Scholar]
- Soliva-Fortuny, R.C.; Mart´ın-Belloso, O. New advances in extending the shelf-life of fresh-cut fruits: A review. Trends Food Sci. Technol. 2003, 14, 341–353. [Google Scholar] [CrossRef]
- Kim, J.G.; Yousef, A.E.; Chism, G.W. Use of ozone to inactivate microorganisms on lettuce. J. Food Safety 1999, 19, 17–34. [Google Scholar] [CrossRef]
- Lee, D.H.; Martin, S.E.; Yoon, H.H.; Park, Y.S.; Kim, C.M. Metabolic sites of ozone injury in Listeria monocytogenes. Food Sci. Biotechnol. 1998, 7, 201–204. [Google Scholar]
- Park, S.Y.; Yoo, M.Y.; Choi, J.H.; Ha, S.D.; Moon, K.D.; Oh, D.H. Microbiological quality enhancement of minimally-processed Enoki mushrooms using ozone and organic acids. Food Sci. Biotechnol. 2005, 14, 803–807. [Google Scholar]
- Restaino, L.; Frampton, E.W.; Hemphill, J.B.; Palnikar, P. Efficacy of ozonated water against various food-related microorganisms. Appl. Environ. Microbiol. 1995, 61, 3471–3475. [Google Scholar]
- Singh, N.; Singh, R.K.; Bhunia, A.K.; Stroshine, R.L. Efficacy of chlorine dioxide, ozone, and thyme essential oil or a sequential washing in killing Escherichia coli O157:H7 on lettuce and baby carrots. Lebensm Wiss. Technol. 2002, 35, 720–729. [Google Scholar] [CrossRef]
- Borrego, A.; Zamora, J.B.; González, R.; Romay, C.; Menéndez, S.; Hernández, F.; Berlanga, J.; Montero, T. Oxygen mixture modifies the subcellular redistribution of bax protein in renal tissue from rats treated with cisplatin. Arch. Med. Res. 2006, 37, 717–722. [Google Scholar] [CrossRef]
- Cataldo, F. DNA degradation with ozone. Inter. J. Biol. Macromol. 2006, 38, 248–254. [Google Scholar] [CrossRef]
- Ishizaki, K.; Shinriki, N.; Matsuyama, H. Inactivation of Bacillus spores by gaseous ozone. J. Appl. Microbiol. 1986, 60, 67–72. [Google Scholar] [CrossRef]
- Graham, D.M. Use of ozone for food processing. Food Technol. 1997, 51, 72–75. [Google Scholar]
- Rice, R.G. Ozone in the United States of America: State-of the-art. Ozone: Sci. Eng. 1999, 21, 99–118. [Google Scholar] [CrossRef]
- Gyawali, R.; Ibrahim, S.A. Synergistic effect of copper and lactic acid against Salmonella and Escherichia coli O157:H7: A review. Emirates J. Food Agric. 2012, 24, 1–9. [Google Scholar] [CrossRef]
- Victorin, K. Review of the genotoxicity of ozone. Mutat. Res. 1992, 277, 221–238. [Google Scholar] [CrossRef]
- Kim, J.G.; Yousef, A.E.; Dave, S. Application of ozone for enhancing the microbiological safety and quality of foods: A review. J. Food Protect. 1999, 62, 1071–1087. [Google Scholar]
- Kapdan, I.K.; Kargi, F. Bio-hydrogen production from waste materials. Enzyme Microb. Tech. 2006, 38, 569–582. [Google Scholar] [CrossRef]
- Hoigne, J.; Bader, H. Ozonation of water: Role of hydroxyl radicals as oxidising intermediates. Science 1975, 190, 782–784. [Google Scholar] [CrossRef]
- Glaze, W.H. Reaction products of ozone: A review. Environ. Health Perspect. 1986, 69, 151–157. [Google Scholar] [CrossRef]
- Guzel-Seydim, Z.; Bever, P.; Greene, A.K. Efficacy of ozone to reduce bacterial populations in the presence of food components. J. Food Microbiol. 2004, 21, 475–479. [Google Scholar] [CrossRef]
- Landeen, L.K.; Moyasar, Y.; Gerba, C. Efficacy of copper and silver ions and reduced levels of free chlorine in inactivation of Legionella pneumophila. Appl. Environ. Microbiol. 1989, 55, 3045–3050. [Google Scholar]
- Lin, Y.S.; Vidic, R.D.; Stout, J.E.; Yu, V.L. Legionella in water distribution systems. J. Am. Water Works Assoc. 1998, 90, 112–121. [Google Scholar]
- Liu, Z.; Stout, J.E.; Tedesco, L.; Boldin, M.; Hwang, C.; Diven, W.F.; Yu, V.L. Controlled evaluation of copper-silver ionization in eradicating Legionell apneumophila from a hospital water distribution system. J. Infect. Dis. 1994, 169, 919–922. [Google Scholar] [CrossRef]
- Mietzner, S.; Schwille, R.C.; Farley, A.; Wald, E.R.; Ge, J.H.; States, S.J.; Libert, T.; Wadowsky, R.M. Efficacy of thermal treatment and copper-silver ionization for controlling Legionella pneumophila in high-volume hot water plumbing systems in hospitals. Am. J. Infect. Control 1997, 25, 452–457. [Google Scholar] [CrossRef]
- Kusnetsov, J.M.; Iivanainen, E.; Elomaa, N.; Zacheus, O.; Martikainen, P.J. Copper and silver ions more effective against Legionellae than against Mycobacteria in a hospital warm water system. Water Res. 2001, 35, 4217–4225. [Google Scholar] [CrossRef]
- Bader, H.; Hoigne, J. Determination of ozone in water by the indigo method. Water Res. 1981, 15, 449–456. [Google Scholar] [CrossRef]
- Sample Availability: Not available.
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Kang, S.-N.; Kim, K.-J.; Park, J.-H.; Lee, O.-H. Effect of a Combination of Low Level Ozone and Metal Ions on Reducing Escherichia coli O157:H7 and Listeria monocytogenes. Molecules 2013, 18, 4018-4025. https://doi.org/10.3390/molecules18044018
Kang S-N, Kim K-J, Park J-H, Lee O-H. Effect of a Combination of Low Level Ozone and Metal Ions on Reducing Escherichia coli O157:H7 and Listeria monocytogenes. Molecules. 2013; 18(4):4018-4025. https://doi.org/10.3390/molecules18044018
Chicago/Turabian StyleKang, Suk-Nam, Kui-Jin Kim, Joung-Hyun Park, and Ok-Hwan Lee. 2013. "Effect of a Combination of Low Level Ozone and Metal Ions on Reducing Escherichia coli O157:H7 and Listeria monocytogenes" Molecules 18, no. 4: 4018-4025. https://doi.org/10.3390/molecules18044018
APA StyleKang, S.-N., Kim, K.-J., Park, J.-H., & Lee, O.-H. (2013). Effect of a Combination of Low Level Ozone and Metal Ions on Reducing Escherichia coli O157:H7 and Listeria monocytogenes. Molecules, 18(4), 4018-4025. https://doi.org/10.3390/molecules18044018