Synthesis and Cytotoxicity of Novel 10-Substituted Dihydroartemisinin Derivatives Containing N-Arylphenyl-ethenesulfonamide Groups
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biological Activity
Compd. | R | IC50(μM) a | ||||||
---|---|---|---|---|---|---|---|---|
MDA | HT29 | U87MG | H460 | A549 | HL-60 | WI38 | ||
3a | H | 2.00 | 0.68 | 3.97 | 5.38 | 2.16 | 1.25 | 16.75 |
3b | 3-chloro | 1.61 | 0.78 | 3.51 | 7.32 | 4.48 | 0.75 | 23.88 |
3c | 4-trifluoromethoxy | 0.39 | 0.20 | 1.59 | 0.97 | 2.11 | 0.05 | 37.47 |
3d | 2-fluoro-5-methyl | 1.27 | 1.78 | 5.71 | 4.29 | 3.64 | 0.84 | 20.53 |
3e | 2-methyl | 1.64 | 0.86 | 2.73 | 1.58 | 7.32 | 2.37 | 16.44 |
3f | 4-chloro | 1.04 | 0.42 | 0.79 | 1.41 | 3.52 | 0.08 | 19.88 |
3g | 2-chloro | 0.93 | 0.55 | 1.78 | 2.53 | 3.05 | 0.17 | 16.33 |
3h | 2,6-dichloro | 1.07 | 0.49 | 2.51 | 1.28 | 4.33 | 0.14 | 20.74 |
6c | 4-trifluoromethoxy | 0.49 | 0.29 | 3.71 | 2.70 | 1.57 | 0.09 | 28.17 |
6b | 3-chloro | 2.23 | 1.11 | 4.52 | 2.79 | 2.86 | 1.81 | 35.76 |
6a | H | 2.26 | 0.98 | 6.47 | 5.28 | 3.21 | 2.41 | 20.04 |
6d | 2-fluoro-5-methyl | 1.33 | 1.82 | 17.24 | 10.88 | 9.72 | 1.30 | 19.28 |
6e | 2-methyl | 2.10 | 2.09 | 3.65 | 1.92 | 5.47 | 3.21 | 16.39 |
6f | 4-chloro | 2.38 | 0.92 | 1.59 | 1.77 | 5.72 | 1.33 | 24.70 |
6i | 3-methoxy | 8.89 | 8.95 | >100 | 16.32 | 11.34 | 8.53 | 19.21 |
6j | 4-fluoro-3-trifluoromethyl | 1.05 | 0.38 | 3.27 | 5.31 | 2.78 | 1.27 | 30.37 |
6g | 2-chloro | 0.72 | 0.45 | 2.69 | 0.89 | 5.31 | 0.27 | 27.20 |
6h | 2,6-dichloro | 0.88 | 0.44 | 3.12 | 1.21 | 2.34 | 0.18 | 23.5 |
DHA b | 9.80 | 5.60 | 15.82 | 12.37 | 10.14 | 5.29 | >100 | |
Cisplatin b | 6.82 | 10.31 | 8.21 | 7.55 | 4.31 | 9.28 | 51.22 |
3. Experimental
3.1. General
3.2. General Procedure for the Preparation of Ethyl 2-(N-Arylsulfamoyl)acetate (9)
3.3. General Procedure for the Preparation of Ethyl 2-(4-Hydroxyphenyl)-N-arylethenesulfonamides 10
3.4. General Procedure for the Preparation of Target Compounds 3a–h
3.5. General Procedure for the Preparation of Target Compounds 6a–j
3.6. Evaluation of Biological Activity
4. Conclusions
References
- Lai, H.; Singh, N.P. Oral artemisinin prevents and delays the development of 7,12-dimethylbenz[a]anthracene (DMBA)-induced breast cancer in the rat. Cancer Lett. 2006, 231, 43–48. [Google Scholar] [CrossRef]
- Efferth, T.; Dunstan, H.; Sauerbrey, A.; Miyachi, H.; Chitambar, C.R. The anti-malarial artesunate is also active against cancer. Int. J. Oncol. 2001, 18, 767–773. [Google Scholar]
- Gordi, T.; Lepist, E.I. Artemisinin derivatives: Toxic for laboratory animals, safe for humans. Toxicol. Lett. 2004, 147, 99–107. [Google Scholar] [CrossRef]
- Dondorp, A.M.; Nosten, F.; Yi, P.; Das, D.; Phyo, A.P.; Tarning, J.; Lwin, K.M.; Ariey, F.; Hanpithakpong, W.; Lee, S.J.; et al. Artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med. 2009, 361, 455–467. [Google Scholar] [CrossRef]
- Wiesner, S.; Helfer, E.; Didry, D.; Ducouret, G.; Lafuma, F.; Carlier, M.F.; Pantaloni, D. A biomimetic motility assay provides insight into the mechanism of actin-based motility. J. Cell Biol. 2003, 160, 387–398. [Google Scholar] [CrossRef]
- Singh, N.P.; Lai, H.C. Artemisinin induces apoptosis in human cancer cells. Anticancer Res. 2004, 24, 2277–2280. [Google Scholar]
- Li, Y.; Wu, J.M.; Shan, F.; Wu, G.S.; Ding, J.; Xiao, D.; Han, J.X.; Atassi, G.; Leonce, S.; Caignard, D.H.; et al. Synthesis and cytotoxicity of dihydroartemisinin ethers containing cyanoarylmethyl group. Bioorg. Med. Chem. 2003, 11, 977–984. [Google Scholar] [CrossRef]
- Chaturvedi, D.; Goswami, A.; Saikia, P.P.; Barua, N.C.; Rao, P.G. Artemisinin and its derivatives: A novel class of anti-malarial and anti-cancer agents. Chem. Soc. Rev. 2010, 39, 435–454. [Google Scholar]
- Xie, L.; Zhao, Y.; Zhai, X.; Li, P.; Liu, C.; Li, Y.; Gong, P. The application of tandem aza-Wittig reaction to synthesize artemisinin-guanidine hybrids and their antitumor activity. Arch. Pharm. 2011, 344, 631–638. [Google Scholar] [CrossRef]
- Xie, L.; Zhai, X.; Ren, L.; Meng, H.; Liu, C.; Zhu, W.; Zhao, Y. Design, synthesis and antitumor activity of novel artemisinin derivatives using hybrid approach. Chem. Pharm. Bull. (Tokyo) 2011, 59, 984–990. [Google Scholar]
- Saikia, B.; Saikia, P.P.; Goswami, A.; Barua, N.C.; Saxena, A.K.; Suri, N. Synthesis of a Novel Series of 1,2,3-Triazole-Containing Artemisinin Dimers with Potent Anticancer Activity Involving Huisgen 1,3-Dipolar Cycloaddition Reaction. Synthesis 2011, 19, 3173–3179. [Google Scholar]
- Yang, X.; Wang, W.; Tan, J.; Song, D.; Li, M.; Liu, D.; Jing, Y.; Zhao, L. Synthesis of a series of novel dihydroartemisinin derivatives containing a substituted chalcone with greater cytotoxic effects in leukemia cells. Bioorg. Med. Chem. Lett. 2009, 19, 4385–4388. [Google Scholar]
- Michael, J.; Amy, E.M.; Paul, A.S.; Louise, L.P.; Rick, C.; Kevin, P.; Miriam, E.K.; Ivo, P.; Stephen, A.W.; Jill, D.; et al. Antitumour and antimalarial activity of artemisinin-acridine hybrids. Bioorg. Med. Chem. Lett. 2009, 19, 2033–2037. [Google Scholar] [CrossRef]
- Pérez, J.M.; López-Solera, I.; Montero, E.I.; Brana, M.F.; Alonso, C.; Robinson, S.P.; Navarro-Ranninger, C. Combined effect of platination and intercalation upon DNA binding of novel cytotoxic Pt-bis(naphthalimide) complexes. J. Med. Chem. 1999, 42, 5482–5486. [Google Scholar] [CrossRef]
- Meunier, B. Hybrid molecules with a dual mode of action: Dream or reality? Acc. Chem. Res. 2008, 41, 69–77. [Google Scholar] [CrossRef]
- Onconova Therapeutics; Temple University. Cancer Chemotherapy. ON-24160. Drug Data Rep. 2008, 30, 636.
- Reddy, M.V.R.; Cosenza, S.C.; Pallela, V.R.; Natala, S.R.; Mallireddigari, M.R.; Maniar, M.; Iqbal, N.M.; Reddy, E.P. Design, synthesis and biological evaluation of novel, orally available tubulin depolymerizing (E) N-aryl-2-arylethenesulfonamide compounds. Proc. Am. Assoc. Cancer Res. 2008, 49, 1410. [Google Scholar]
- Yu, P.L.; Chen, Y.X.; Li, Y.; Ji, R.Y. Synthesis of qinghaosu derivatives Containing halogen, nitrogen and sufur atoms. Acta Pharm. Sin. 1985, 20, 357–365. [Google Scholar]
- Haynes, R.K.; Ho, W.Y.; Chan, H.W.; Fugmann, B.; Stetter, J.; Vivas, L.; Peters, W.; Robinson, B.L. Highly Antimalaria-Active Artemisinin Derivatives: Biological Activity Does Not Correlate with Chemical Reactivity. Angew. Chem. Int. Ed. Engl. 2004, 43, 1381–1385. [Google Scholar]
- Xu, S.Y.; Xu, S.Y.; Bian, R.L.; Chen, X. Method of Pharmacology; Public Health Publishing House: Beijing, China, 2002; pp. 1784–1786. [Google Scholar]
- Sample Availability: Samples of the compounds 3a–h and 6a–j are available from the authors.
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Liu, Y.; Liu, Z.; Shi, J.; Chen, H.; Mi, B.; Li, P.; Gong, P. Synthesis and Cytotoxicity of Novel 10-Substituted Dihydroartemisinin Derivatives Containing N-Arylphenyl-ethenesulfonamide Groups. Molecules 2013, 18, 2864-2877. https://doi.org/10.3390/molecules18032864
Liu Y, Liu Z, Shi J, Chen H, Mi B, Li P, Gong P. Synthesis and Cytotoxicity of Novel 10-Substituted Dihydroartemisinin Derivatives Containing N-Arylphenyl-ethenesulfonamide Groups. Molecules. 2013; 18(3):2864-2877. https://doi.org/10.3390/molecules18032864
Chicago/Turabian StyleLiu, Yajing, Zijian Liu, Jiyue Shi, Huimin Chen, Bin Mi, Peng Li, and Ping Gong. 2013. "Synthesis and Cytotoxicity of Novel 10-Substituted Dihydroartemisinin Derivatives Containing N-Arylphenyl-ethenesulfonamide Groups" Molecules 18, no. 3: 2864-2877. https://doi.org/10.3390/molecules18032864
APA StyleLiu, Y., Liu, Z., Shi, J., Chen, H., Mi, B., Li, P., & Gong, P. (2013). Synthesis and Cytotoxicity of Novel 10-Substituted Dihydroartemisinin Derivatives Containing N-Arylphenyl-ethenesulfonamide Groups. Molecules, 18(3), 2864-2877. https://doi.org/10.3390/molecules18032864