Determination and Comparison of Seed Oil Triacylglycerol Composition of Various Soybeans (Glycine max (L.)) Using 1H-NMR Spectroscopy
Abstract
:1. Introduction
2. Results and Discussion
Entry | Variety | Color | Oil yield a |
---|---|---|---|
1 | Jangwonkong | yellow | 5.4 |
2 | Anpyungkong | yellow | 7.3 |
3 | Daepungkong | yellow/wine | 6.5 |
4 | Daewonkong | yellow/wine | 8.5 |
5 | Pureunkong | green | 2.7 |
6 | Samnamkong | green | 4.8 |
7 | Dooyookong | yellow | 5.3 |
8 | Cheongjakong | black | 3.9 |
9 | Buseok | green | 4.2 |
10 | Dachaekong | yellow | 3.3 |
11 | Seonamkong | yellow | 3.5 |
12 | Yak-kong | black | 0.9 |
13 | Hwangsekjilgeumkong | yellow/green | 3.5 |
14 | Milyangkong | yellow | 2.3 |
15 | Danwonkong | yellow | 6.2 |
16 | Bongeui | yellow | 2.5 |
17 | Kwangdu | yellow | 4.1 |
18 | Seomoktae | yellow | 4.0 |
19 | Subaktae | black/green | 3.4 |
20 | Seoritae | black | 4.1 |
21 | Shinhwakong | yellow | 11.9 |
22 | Vandalkong | wine | 7.9 |
23 | Saeal | black/green | 5.1 |
24 | Geomjeong Bul Kong | light black | 6.4 |
25 | Bamsekyak-kong | wine | 8.7 |
26 | Bamkong | wine/white spot | 9.5 |
27 | Yongan | black/light yellow | 6.4 |
28 | Horangi kong | wine | 6.2 |
29 | Seonbikong | black/light green | 8.5 |
30 | Dollkong (wild soybean) | dark wine | 2.3 |
31 | Nabdegikong | wine/light green | 7.2 |
32 | Geomjeong-nabdegikong | black | 3.8 |
Signal | Chemical shift (ppm) | Functional group |
---|---|---|
A | 0.83–0.93 | -CH3 (saturated, oleic and linoleic acyl chains) |
B | 0.93–1.03 | -CH3 (linolenic acyl chains) |
C | 1.94–2.14 | -CH2-CH=CH- (acyl chains) |
D | 2.23–2.36 | -OCO-CH2- (acyl chains) |
E | 2.70–2.84 | =HC-CH2-CH= (acyl chains) |
Entry | Variety | Linolenic | Linoleic | Oleic | Saturated |
---|---|---|---|---|---|
1 | Jangwonkong | 12.3% | 44.2% | 26.5% | 17.0% |
2 | Anpyungkong | 13.0% | 48.0% | 18.1% | 20.9% |
3 | Daepungkong | 13.8% | 47.7% | 23.2% | 15.3% |
4 | Daewonkong | 13.8% | 45.6% | 24.3% | 16.3% |
5 | Pureunkong | 12.3% | 45.1% | 23.4% | 19.2% |
6 | Samnamkong | 13.5% | 40.8% | 32.4% | 13.3% |
7 | Dooyookong | 12.3% | 49.4% | 22.5% | 15.8% |
8 | Cheongjakong | 12.3% | 44.3% | 22.5% | 15.8% |
9 | Buseok | 13.8% | 41.4% | 25.8% | 19.0% |
10 | Dachaekong | 13.0% | 45.3% | 24.7% | 17.0% |
11 | Seonamkong | 13.0% | 43.0% | 27.8% | 16.2% |
12 | Yak-kong | 13.0% | 43.7% | 28.1% | 15.2% |
13 | Hwangsekjilgeumkong | 12.2% | 37.4% | 34.1% | 16.3% |
14 | Milyangkong | 11.5% | 38.2% | 31.5% | 18.8% |
15 | Danwonkong | 10.7% | 49.0% | 26.2% | 14.0% |
16 | Bongeui | 13.0% | 39.4% | 31.5% | 16.1% |
17 | Kwangdu | 13.0% | 45.9% | 25.7% | 15.4% |
18 | Seomoktae | 12.3% | 47.9% | 21.0% | 18.8% |
19 | Subaktae | 13.0% | 46.9% | 23.8% | 16.3% |
20 | Seoritae | 13.0% | 45.8% | 24.6% | 16.6% |
21 | Shinhwakong | 13.0% | 45.5% | 25.2% | 16.3% |
22 | Vandalkong | 12.3% | 50.1% | 16.8% | 20.8% |
23 | Saeal | 15.2% | 43.3% | 21.8% | 19.7% |
24 | Geomjeong Bul Kong | 12.2% | 43.3% | 25.7% | 18.8% |
25 | Bamsekyak-kong | 12.2% | 47.8% | 22.1% | 17.9% |
26 | Bamkong | 15.2% | 36.5% | 29.8% | 18.5% |
27 | Yongan | 13.8% | 47.4% | 18.5% | 20.3% |
28 | Horangi kong | 13.0% | 49.2% | 20.8% | 17.0% |
29 | Seonbikong | 14.5% | 45.9% | 22.2% | 17.4% |
30 | Dollkong (wild soybean) | 19.3% | 45.6% | 15.7% | 19.4% |
31 | Nabdegikong | 15.9% | 48.8% | 18.5% | 16.8% |
32 | Geomjeong-nabdegikong | 15.2% | 48.5% | 18.3% | 18.0% |
Mean | 13.3% | 45.0% | 24.1% | 17.3% |
3. Experimental
3.1. Soybean Materials
3.2. Preparation of Oils
3.3. 1H-NMR Analysis
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Messina, M.J.; Persky, V.; Setchell, K.D.R.; Barnes, S. Soy intake and cancer risk: A review of the in-vitro and in-vivo data. Nutr. Cancer 1994, 21, 113–131. [Google Scholar] [CrossRef]
- Li, R.; Hatanaka, T.; Yu, K.; Wu, Y.; Fulushige, H.; Hildebrand, D. Soybean oil biosynthesis: Role of diacylglycerol acyltransferases. Funct. Integr. Genomics 2013, 13, 99–113. [Google Scholar] [CrossRef]
- Dubtsova, G.N.; Negmatulloeva, R.N.; Bessonov, V.V.; Baĭkov, V.G.; Sheviakova, L.V.; Makhova, N.N.; Perederiaev, O.I.; Bogachuk, M.N.; Baĭgarin, E.K. Composition and content of biologically active substances in rose hips. Vopr. Pitan. 2012, 81, 84–88. [Google Scholar]
- Ando, H.; Ryu, A.; Hashimoto, A.; Oka, M.; Ichihara, M. Linoleic acid and alpha-linolenic acidlightens ultraviolet-induced hyperpigmentation of the skin. Arch. Dermatol. Res. 1998, 290, 375–381. [Google Scholar] [CrossRef]
- Hwang, J.S.; Choi, H.; Rho, H.S.; Shin, H.J.; Kim, D.H.; Lee, J.; Lee, B.G.; Chang, I. Pigment-lightening effect of N,N'-dilinoleylcystamine on human melanoma cells. Br. J. Dermatol. 2004, 150, 39–46. [Google Scholar] [CrossRef]
- Hamazaki-Fujita, N.; Itomura, M.; Hamazaki, K.; Tohno, H.; Yomoda, S.; Terashima, Y.; Hamazaki, T. Relationships among skin conditions, mood, and polyunsaturated fatty acids of RBCs in healthy women. J. Cosmet. Sci. 2012, 63, 303–310. [Google Scholar]
- Marchi, F.D.; Seraglia, R.; Molin, L.; Traldi, P.; Rosso, M.D.; Panighel, A.; Vedova, A.D.; Gardiman, M.; Giust, M.; Flamini, R. Seed oil triacylglyceride profiling of thirty-two hybrid grape varieties. J. Mass Spectrom. 2012, 47, 1113–1119. [Google Scholar] [CrossRef]
- Savikin, K.P.; Dodevic, B.S.; Ristic, M.S.; Krivokuca-Dokic, D.; Pljevljakusic, D.S.; Vulic, T. Variation in the fatty-acidcontent in seeds of various black, red, and white currant varieties. Chem. Biodivers. 2013, 10, 157–165. [Google Scholar] [CrossRef]
- Malencic, D.; Popovic, M.; Miladinovic, J. Phenolic content and antioxidant properties of soybean (Glycine max (L.) Merr.) seeds. Molecules 2007, 12, 576–581. [Google Scholar]
- Zhang, R.F.; Zhang, F.X.; Zhang, M.W.; Wei, Z.C.; Yang, C.Y.; Zhang, Y.; Tang, X.J.; Deng, Y.Y.; Chi, J.W. Phenolic composition and antioxidant activity in seed coats of 60 Chinese black soybean (Glycine max L. Merr.) varieties. J. Agric. Food Chem. 2011, 59, 5935–5944. [Google Scholar] [CrossRef]
- Whent, M.; Hao, J.; Slavin, M.; Zhou, M.; Song, J.; Kenworthy, W.; Yu, L.L. Effect of genotype, environment, and their interaction on chemical composition and antioxidantproperties of low-linolenic soybeans grown in Maryland. J. Agric. Food Chem. 2009, 57, 10163–10174. [Google Scholar] [CrossRef]
- Rao, M.S.; Bhagsari, A.S.; Mohamed, A.I. Yield, protein, and oil quality of soybean genotypes selected for tofu production. Plant Foods Hum. Nutr. 1998, 52, 241–251. [Google Scholar] [CrossRef]
- Jakab, A.; Nagy, K.; Heberger, K.; Vekey, K.; Forgacs, E. Differentiation of vegetable oils by mass spectrometry combined with statistical analysis. Rapid Commun. Mass Spectrom. 2002, 16, 2291–2297. [Google Scholar] [CrossRef]
- Buchgraber, M.; Ulberth, F.; Emons, H.; Anklam, E. Triacylglycerol profiling by using chromatographic techniques. Eur. J. Lipid Sci. Technol. 2004, 106, 621–648. [Google Scholar] [CrossRef]
- Laakso, P. Analysis of triacylglycerols-approaching the molecular composition of natural mixture. Food Rev. Int. 1996, 12, 199–250. [Google Scholar] [CrossRef]
- Salinero, C.; Feas, X.; Mansilla, J.P.; Seijas, J.A.; Vazquez-Tato, M.P.; Vela, P.; Sainz, M.J. 1H-nuclear magnetic resonance analysis of the triacylglyceride composition of cold-pressed oil from Camellia japonica. Molecules 2012, 17, 6716–6727. [Google Scholar] [CrossRef]
- Guillen, M.D.; Ruiz, A. 1H nuclear magnetic resonance as a fast tool for determining the composition of acyl chains in acylglycerol mixtures. Eur. J. Lipid Sci. Technol. 2003, 105, 502–507. [Google Scholar] [CrossRef]
- Guillen, M.D.; Ruiz, A. Rapid simultaneous determination by proton NMR of unsaturation and composition of acyl groups in vegetable oils. Eur. J. Lipid Sci. Technol. 2003, 105, 688–696. [Google Scholar] [CrossRef]
- Sample Availability: Soybean oils of 32 varieties are available from the authors.
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Kim, W.W.; Rho, H.S.; Hong, Y.D.; Yeom, M.H.; Shin, S.S.; Yi, J.G.; Lee, M.-S.; Park, H.Y.; Cho, D.H. Determination and Comparison of Seed Oil Triacylglycerol Composition of Various Soybeans (Glycine max (L.)) Using 1H-NMR Spectroscopy. Molecules 2013, 18, 14448-14454. https://doi.org/10.3390/molecules181114448
Kim WW, Rho HS, Hong YD, Yeom MH, Shin SS, Yi JG, Lee M-S, Park HY, Cho DH. Determination and Comparison of Seed Oil Triacylglycerol Composition of Various Soybeans (Glycine max (L.)) Using 1H-NMR Spectroscopy. Molecules. 2013; 18(11):14448-14454. https://doi.org/10.3390/molecules181114448
Chicago/Turabian StyleKim, Won Woo, Ho Sik Rho, Yong Deog Hong, Myung Hun Yeom, Song Seok Shin, Jun Gon Yi, Min-Seuk Lee, Hye Yoon Park, and Dong Ha Cho. 2013. "Determination and Comparison of Seed Oil Triacylglycerol Composition of Various Soybeans (Glycine max (L.)) Using 1H-NMR Spectroscopy" Molecules 18, no. 11: 14448-14454. https://doi.org/10.3390/molecules181114448
APA StyleKim, W. W., Rho, H. S., Hong, Y. D., Yeom, M. H., Shin, S. S., Yi, J. G., Lee, M.-S., Park, H. Y., & Cho, D. H. (2013). Determination and Comparison of Seed Oil Triacylglycerol Composition of Various Soybeans (Glycine max (L.)) Using 1H-NMR Spectroscopy. Molecules, 18(11), 14448-14454. https://doi.org/10.3390/molecules181114448