Enzymatic Reduction of 9-Methoxytariacuripyrone by Saccharomyces cerevisiae and Its Antimycobacterial Activity
Abstract
1. Introduction

2. Results and Discussion

3. Experimental
3.1. General
3.2. The Biotransformation Process
3.3. Extraction, Purification and Elucidation of Biotransformation Product
3.4. Antimycobacterial Assay
4. Conclusions
Acknowledgments
References
- Velasco, B.R.; Montenegro, M.L.; Vélez, S.F.; García, P.C.; Durango, R.L. Biotransformación de compuestos aromáticos sustituidos mediante hongos filamentosos fitopatógenos de los géneros Botryodiplodia y Colletotrichum. Rev. Soc. Quim. Peru 2009, 75, 94–111. [Google Scholar]
- Gavrilescu, M.; Chisti, Y. Biotechnology a sustainable alternative for chemical industry. Biotechnol. Adv. 2005, 23, 471–499. [Google Scholar] [CrossRef]
- Loughlin, W.A. Biotransformations in organic synthesis. Bioresour. Technol. 2000, 74, 49–62. [Google Scholar] [CrossRef]
- Csuk, R.; Glanzer, B. Baker’s yeast mediated transformations in organic chemistry. Chem. Rev. 1991, 91, 49–97. [Google Scholar]
- Demyttenaere, C.J.R.; De Pooter, H.L. Biotransformation of geraniol and nerol by spores of Penicillium italicum. Phytochemistry 1996, 41, 1079–1082. [Google Scholar]
- Moreira-Dos Santos, M.; Thygesen, G.; Kötter, P.; Olsson, L.; Nielsen, J. Aerobic physiology of redox-engineered Saccharomyces cerevisiae strains modified in the ammonium assimilation for increased NADPH availability. FEMS Yeast Res. 2003, 4, 59–68. [Google Scholar] [CrossRef]
- Salinas, Y.; Oliart, R.M.; Ramírez-Lepe, M.; Navarro-Ocaña, A.; Valerio-Alfaro, G. Synthesis of chiral α-hydroxy amides by two sequential enzymatic catalyzed reactions. Appl. Microbiol. Biotechnol. 2007, 75, 297–302. [Google Scholar] [CrossRef]
- Paquette, L.A. Handbook of Reagents for Organic Synthesis: Chiral Reagents for Asymmetric Synthesis; John Wiley and Sons, Ltd.: Chichester, UK, 2003; pp. 45–48. [Google Scholar]
- Roberts, S.M. Preparative Biotransformations, Whole Cell and Isolated Enzymes in Organic Synthesis; Wiley and Sons: Exeter, UK, 1997. [Google Scholar]
- Achenbach, H.; Waibel, R.; Zwanzger, M.; Domínguez, X.A.; Espinosa, B.G.; Verde, S.J.; Sánchez, V.H. 9-methoxy and 7,9 dimethoxytariacuripyrone, natural nitro-compounds with a new basic skeleton from Aristolochia brevipes. J. Nat. Prod. 1992, 55, 918–922. [Google Scholar]
- Martínez, M. Las Plantas Medicinales de México, 6th ed; Librería y Ediciones Botas: Coyoacán, DF, Mexico, 1991; p. 270. [Google Scholar]
- Achenbach, H.; Waibel, R.; Zwanzger, M.; Domínguez, X.A.; Espinosa, B.G.; Verde, S.J.; Sánchez, V.H.; Guajardo, E. 6a,7-Dehydro-N-formylnornantenine and other constituents from Aristolochia brevipes. Planta Med. 1995, 61, 189–190. [Google Scholar]
- Navarro-García, V.M.; Luna-Herrera, J.; Rojas-Bribiesca, M.G.; Álvarez-Fitz, P.; Ríos-Gómez, M.Y. Antibacterial activity of Aristolochia brevipes against multidrug-resistant Mycobacterium tuberculosis. Molecules 2011, 16, 7357–7364. [Google Scholar] [CrossRef]
- Marvin-Sikkema, F.D.; de Bont, J.A.M. Degradation of nitroaromatic compounds by microorganisms. Appl. Microbiol. Biotechnol. 1994, 42, 499–507. [Google Scholar] [CrossRef]
- Roldán, M.D.; Pérez-Reinado, E.; Castillo, F.; Moreno-Vivián, C. Reduction of polynitroaromatic compounds: the bacterial nitroreductase. FEMS Microbiol. Rev. 2008, 32, 474–500. [Google Scholar]
- Takeshita, M.; Yoshida, S.; Kiya, R.; Higuchi, N.; Kobayashi, Y. Reduction of Aromatic Nitro Compounds with Baker’s Yeast. Chem. Pharm. Bull. 1989, 37, 615–617. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, I.M.; Bonatto, D.; Pega Henriques, J.A. Nitroreductases: Enzymes with Environmental Biotechnological and Clinical Importance. In Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology; Mendez-Vilas, A., Ed.; Formatex: Badajoz, Spain, 2010; pp. 1008–1019. [Google Scholar]
- Race, P.R.; Lovering, A.L.; Green, R.M.; Ossor, A.; White, S.A.; Searle, P.F.; Wrighton, C.J.; Hyde, E.I. Structural and mechanistic studies of Escherichia coli nitroreductase with the antibiotic nitrofurazone. Reversed binding orientations in different redox states of the enzyme. J. Biol. Chem. 2005, 280, 13256–13264. [Google Scholar]
- Haack, T.; Erdinger, L.; Boche, G. Mutagenicity in Salmonella typhimurium TA98 and TA100 of nitroso and respective hydroxylamine compounds. Mutat. Res. 2001, 491, 183–193. [Google Scholar] [CrossRef]
- Kobori, T.; Sasaki, H.; Lee, W.C.; Zenno, S.; Saigo, K.; Murphy, M.E.P.; Tonakura, M. Structure and site directed mutagenesis of a flavoprotein from Escherichia coli that reduces nitrocompounds: Alteration of pyridine nucleotide binding by a single amino acid substitution. J. Biol. Chem. 2001, 276, 2816–2823. [Google Scholar]
- Šarlauskas, J.; Nemeikaite-Čeniene, A.; Anusevičius, Ž.; Misevičiene, L.; Julvez, M.M.; Medina, M.; Gomez-Moreno, C.; Čenas, N. Flavoenzyme-catalyzed redox cycling of hydroxylamino and amino metabolites of 2,4,6-trinitrotoluene: implications for their cytotoxicity. Arch. Biochem Biophys. 2004, 425, 184–192. [Google Scholar] [CrossRef]
- Kadiyala, V.; Nadeau, L.J.; Spain, J.C. Construction of Escherichia coli strains for conversion of nitroacetophenones to ortho-aminophenols. Appl. Environ. Microbiol. 2003, 69, 6520–6526. [Google Scholar] [CrossRef]
- Hannink, N.K.; Rosser, S.J.; French, C.E.; Basran, A.; Murray, J.A.H.; Nicklin, S.; Bruce, N.C. Phytodetoxification of TNT by transgenic plants expressing a bacterial nitroreductase. Nat. Biotechnol. 2001, 19, 1168–1172. [Google Scholar]
- Pacheco, A.O.; Kagohara, E.; Andrade, L.H.; Comasseto, J.V.; Crusius, I.H.-S.; Paula, C.R.; Porto, A.L.M. Biotransformations of nitro-aromatic compounds to amines and acetamides by tuberous roots of Arracacia xanthorrhiza and Beta vulgaris and associated microorganism (Candidaguilliermondii). Enzyme Microb. Technol. 2007, 42, 65–69. [Google Scholar]
- Luna-Herrera, J.; Costa, M.C.; González, H.G.; Rodríguez, A.I.; Castilho, P.C. Synergistic antimycobacterial activities of sesquiterpene lactones from Laurus spp. J. Antimicrob. Chemother. 2007, 59, 548–552. [Google Scholar]
- Oliveira, I.M.; Henriques, J.A.; Bonatto, D. In silico identification of a new group of specific bacterial and fungal nitroreductases-like proteins. Biochem. Biophys. Res. Commun. 2007, 355, 919–925. [Google Scholar] [CrossRef]
- Sample Availability: Not available.
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Alvarez-Fitz, P.; Alvarez, L.; Marquina, S.; Luna-Herrera, J.; Navarro-García, V.M. Enzymatic Reduction of 9-Methoxytariacuripyrone by Saccharomyces cerevisiae and Its Antimycobacterial Activity. Molecules 2012, 17, 8464-8470. https://doi.org/10.3390/molecules17078464
Alvarez-Fitz P, Alvarez L, Marquina S, Luna-Herrera J, Navarro-García VM. Enzymatic Reduction of 9-Methoxytariacuripyrone by Saccharomyces cerevisiae and Its Antimycobacterial Activity. Molecules. 2012; 17(7):8464-8470. https://doi.org/10.3390/molecules17078464
Chicago/Turabian StyleAlvarez-Fitz, Patricia, Laura Alvarez, Silvia Marquina, Julieta Luna-Herrera, and Víctor Manuel Navarro-García. 2012. "Enzymatic Reduction of 9-Methoxytariacuripyrone by Saccharomyces cerevisiae and Its Antimycobacterial Activity" Molecules 17, no. 7: 8464-8470. https://doi.org/10.3390/molecules17078464
APA StyleAlvarez-Fitz, P., Alvarez, L., Marquina, S., Luna-Herrera, J., & Navarro-García, V. M. (2012). Enzymatic Reduction of 9-Methoxytariacuripyrone by Saccharomyces cerevisiae and Its Antimycobacterial Activity. Molecules, 17(7), 8464-8470. https://doi.org/10.3390/molecules17078464
