Effect of Acid and Base Catalyzed Hydrolysis on the Yield of Phenolics and Antioxidant Activity of Extracts from Germinated Brown Rice (GBR)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Yield of the GBR Crude Extract
2.2. Total Phenolic Content
2.3. Total Flavonoid Content
2.4. DPPH Radical Scavenging Activity
2.5. ABTS Radical Cation Scavenging Activity
2.6. FRAP Assay
2.7. HPLC of Phenolic Compounds
3. Experimental
3.1. Materials
3.1.1. Reagents and Chemicals
3.1.2. Preparation of GBR
3.1.3. Extraction
3.1.4. Total Phenolic Content (TPC)
3.1.5. Total Flavonoid Content (TFC)
3.1.6. DPPH Radical Scavenging Activity
3.1.7. ABTS Radical Cation Scavenging Activity
3.1.8. FRAP Assay
3.1.9. HPLC Analysis
3.1.10. Statistical Analysis
4. Conclusions
Acknowledgements
References
- Banchuen, J.; Thammarutwasik, P.; Ooraikul, B.; Wuttijumnong, P.; Sirivongpaisal, P. Effect of germinating processes on bioactive component of sangyodmuangphatthalung rice. Thai J. Agric. Sci. 2009, 42, 191–199. [Google Scholar]
- Tian, S.; Nakamura, K.; Kayahara, H. Analysis of phenolic compounds in white rice, brown rice, and germinated brown rice. J. Agric. Food Chem. 2004, 52, 4808–4813. [Google Scholar] [CrossRef] [PubMed]
- Komatsuzaki, N.; Tsukahara, K.; Toyoshima, H.; Suzuki, T.; Shimizu, N.; Kimura, T. Effect of soaking and gaseous treatment on GABA content in germinated brown rice. J. Food Eng. 2007, 78, 556–560. [Google Scholar] [CrossRef]
- Latifah, S.Y.; Armania, N.; Tze, T.H.; Azhar, Y.; Nordiana, A.H.; Norazalina, S. Germinated brown rice (GBR) reduces the incidence of aberrant crypt foci with the involvement of β-catenin and COX-2 in azoxymethane-induced colon cancer in rats. Nutr. J. 2010, 9, 16. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Shen, T.; Lou, H. Dietary polyphenols and their biological significance. Int. J. Mol. Sci. 2007, 8, 950–988. [Google Scholar] [CrossRef]
- Katalinic, V.; Mozina, S.S.; Skroza, D.; Generalic, I.; Abramovic, H.; Milos, M. Polyphenolic profile, antioxidant properties and antimicrobial activity of grape skin extracts of 14 Vitisvinifera varieties grown in Dalmatia (Croatia). Food Chem. 2010, 119, 715–723. [Google Scholar] [CrossRef]
- Ryan, D.; Lawrence, H.; Prenzler, P.D.; Antolovich, M.; Robards, K. Recovery of phenolic compounds from oleaeuropaea. Anal. Chim. Acta 2001, 445, 67–77. [Google Scholar] [CrossRef]
- Lai, P.; Li, K.Y.; Lu, S.; Chen, H.H. Phytochemicals and antioxidant properties of solvent extracts from japonica rice bran. Food Chem. 2009, 117, 538–544. [Google Scholar] [CrossRef]
- Jin, L.; Xiao, P.; Lu, Y.; Shao, Y.; Shen, Y.; Bao, J. Quantitative trait loci for brown rice colour, phenolics, flavonoid contents, and antioxidant capacity in rice grain. Cereal Chem. 2009, 86, 609–615. [Google Scholar] [CrossRef]
- Moongngarm, A.; Saetung, N. Comparison of chemical compositions and bioactive compounds of germinated rough rice and brown rice. Food Chem. 2010, 122, 782–788. [Google Scholar] [CrossRef]
- Muntana, N.; Prasong, S. Study on total phenolic contents and their antioxidant activities of Thai white, red and black rice bran extracts. Pak. J. Biol. Sci. 2010, 13, 170–174. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, S.; Bhanger, M.I.; Anwar, F. Antioxidant properties and components of some commercially available varieties of rice bran in Pakistan. Food Chem. 2005, 93, 265–272. [Google Scholar] [CrossRef]
- Chatha, S.A.S.; Anwar, F.; Manzoor, M.; Rehman, B.J. Evaluación de laactividadantioxidante de extractos de salvado de arroz mediante differentes ensayos. Grasas Aceites 2006, 57, 328–335. [Google Scholar]
- Choi, Y.; Jeong, H.S.; Lee, J. Antioxidant activity of methanolic extracts from some grains consumed in Korea. Food Chem. 2007, 103, 130–138. [Google Scholar] [CrossRef]
- Moure, A.; Pazos, M.; Medina, I.; Dominguez, H.; Parajo, J.C. Antioxidant activity of extracts produced by solvent extraction of almond shells acid hydrolysates. Food Chem. 2007, 101, 193–201. [Google Scholar] [CrossRef]
- Vasantha Rupasinghe, H.P.; Kathirvel, P.; Huber, G.M. Ultrasonication-assisted solvent extraction of quercetin glycosides from ‘Idared’ Apple Peels. Molecules 2011, 16, 9783–9791. [Google Scholar] [CrossRef] [PubMed]
- Saadi, A.; Lempereur, I.; Sharonov, S.; Autran, J.; Manfait, M. Spatial distribution of phenolic materials in durum wheat grain as probed by confocal fluorescence spectral imaging. J. Cereal. Sci. 1998, 28, 107–114. [Google Scholar] [CrossRef]
- Kim, K.H.; Tsao, R.; Yang, R.; Cui, S.W. Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions. Food Chem. 2006, 95, 466–473. [Google Scholar] [CrossRef]
- Adom, K.K.; Sorrells, M.E.; Liu, R.H. Phytochemical profiles and antioxidant activity of wheat varieties. J. Agric. Food Chem. 2003, 51, 7825–7834. [Google Scholar] [CrossRef] [PubMed]
- Verma, B.; Hucl, P.; Chibbar, R.N. Phenolic acid composition and antioxidant capacity of acid and alkali hydrolysed wheat bran fractions. Food Chem. 2009, 116, 947–954. [Google Scholar] [CrossRef]
- Kriengsak, T.; Unaroj, B.; Kevin, C.; Luis, C.; David, H.B. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar]
- Awika, J.M.; Rooney, L.W.; Wu, X.; Prior, R.L.; Cisneros-Zevallos, L. Screening methods to measure antioxidant activity of sorghum (Sorghum bicolor) and sorghum product. J. Agric. Food Chem. 2003, 51, 6657–6662. [Google Scholar] [CrossRef] [PubMed]
- Hodzic, Z.; Pasalic, H.; Memisevic, A.; Srabovic, M.; Salatovic, M.; Poljakovic, M. The influence of total phenols content on antioxidant capacity in the whole grain extracts. Eur. J. Sci. Res. 2009, 3, 471–477. [Google Scholar]
- Sosulski, F.; Krygier, K.; Hogge, L. Free, esterified, and insoluble-bound phenolic acids. 3. Composition of phenolic acids in cereal and potato flours. J. Agric. Food Chem. 1982, 30, 337–340. [Google Scholar] [CrossRef]
- Chan, K.W.; Ismail, M. Supercritical carbon dioxide fluid extraction of hibiscus cannabinus L. Seedoil: Apotential solvent-free and high antioxidative edible oil. Food Chem. 2009, 114, 970–975. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cationdecolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Chirinos, R.; Betalleluz-Pallardel, I.; Huamán, A.; Arbizu, C.; Pedreschi, R.; Campos, D. HPLC-DAD characterisation of phenolic compounds from Andean (oxalis tuberosa mol.) tubers and their contribution to the antioxidant capacity. Food Chem. 2009, 113, 1243–1251. [Google Scholar] [CrossRef]
Sample Availability: Not available. |
Phenolic acid | Calibration curve range (µg/mL) | Regression equation | R2 | Retention time (min) | Area (y) (mAU*s) | Concentration (x, µg/g) |
---|---|---|---|---|---|---|
Gallic | 1.56–25 | y= 57.342x − 0.3129 | R2 = 1 | 2.267 | 39,544.9 | 689.64 |
Hydroxycinnamic | 1.56–25 | y = 33.738x − 2.0438 | R2 = 1 | 6.256 | 517,169.8 | 15329 |
Chlorogenic | 3.13–25 | y = 4.4916x − 0.3016 | R2 = 1 | 6.914 | 433,190.5 | 9644.45 |
Caffeic | 1.56–25 | y = 18.791x − 0.728 | R2 = 1 | 8.387 | 19,381.3 | 1031.45 |
Vanillic | 1.56–100 | y = 36.364x − 0.3407 | R2 = 1 | 8.567 | 40,229.6 | 1106.31 |
Syringic | 1.56–100 | y = 58.995x − 3.4366 | R2 = 1 | 9.496 | 61,044.9 | 1038.81 |
Protocatechuic | 6.25–50 | y = 57.727x − 8.409 | R2 = 0.9999 | 11.848 | 858,296.3 | 1486.83 |
p-Coumaric | 1.56–100 | y = 58.331x − 4.9255 | R2 = 1 | 12.055 | 54,838.8 | 940.22 |
Ferulic | 1.56–12.5 | y = 13.942x − 0.6618 | R2 = 0.9999 | 13.207 | 20,491.5 | 1469.82 |
Retention Time (min) | Concentrations (µg/g) | |||||
---|---|---|---|---|---|---|
Phenolics | NH | AH | BH | NH | AH | BH |
Gallic | ND | 2.345 ± 0.06 | 2.311 ± 0.008 | ND | 9.516 ± 0.412 | 13.822 ± 1.88 |
Hydroxycinnamic | ND | ND | 6.222 ± 0.014 | ND | ND | 17.465 ± 0.11 |
Chlorogenic | ND | ND | ND | ND | ND | |
Caffeic | ND | ND | 8.394 ± 0.008 | ND | ND | 61.319 ± 0.12 |
Vanillic | ND | 8.603 ± 0.07 | ND | ND | 3.319 ± 0.53 | ND |
Syringic | ND | ND | 9.584 ± 0.009 | ND | ND | 10.499 ± 0.02 |
Protocatechuic | ND | ND | 11.876 ± 0.009 | ND | ND | 13.816 ± 0.12 |
p-Coumaric | 12.140 ± 0.014 | 12.105 ± 0.098 | 12.116 ± 0.004 | 8.670 ± 1.32 | 5.567 ± 0.06 | 9.122 ± 0.94 |
Ferulic | 13.179 ± 0.012 | 13.202 ± 0.013 | ND | 7.96 ± 0.662 | 13.212 ± 0.82 | ND |
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Sani, I.M.; Iqbal, S.; Chan, K.W.; Ismail, M. Effect of Acid and Base Catalyzed Hydrolysis on the Yield of Phenolics and Antioxidant Activity of Extracts from Germinated Brown Rice (GBR). Molecules 2012, 17, 7584-7594. https://doi.org/10.3390/molecules17067584
Sani IM, Iqbal S, Chan KW, Ismail M. Effect of Acid and Base Catalyzed Hydrolysis on the Yield of Phenolics and Antioxidant Activity of Extracts from Germinated Brown Rice (GBR). Molecules. 2012; 17(6):7584-7594. https://doi.org/10.3390/molecules17067584
Chicago/Turabian StyleSani, Ismaila Muhammad, Shahid Iqbal, Kim Wei Chan, and Maznah Ismail. 2012. "Effect of Acid and Base Catalyzed Hydrolysis on the Yield of Phenolics and Antioxidant Activity of Extracts from Germinated Brown Rice (GBR)" Molecules 17, no. 6: 7584-7594. https://doi.org/10.3390/molecules17067584
APA StyleSani, I. M., Iqbal, S., Chan, K. W., & Ismail, M. (2012). Effect of Acid and Base Catalyzed Hydrolysis on the Yield of Phenolics and Antioxidant Activity of Extracts from Germinated Brown Rice (GBR). Molecules, 17(6), 7584-7594. https://doi.org/10.3390/molecules17067584