Protective Effect of Salvia miltiorrhiza Extract Against Renal Ischemia-Reperfusion-Induced Injury in Rats
Abstract
:1. Introduction
2. Results
Group | Scr (mmol/L) | BUN (mmol/L) | IL-6 (ng/mL) | IL-8 (ng/mL) | TNF-α (ng/mL) |
---|---|---|---|---|---|
sham | 68.18 ± 3.48 | 6.29 ± 0.42 | 1.51 ± 0.18 | 1.42 ± 0.25 | 0.514 ± 0.038 |
SMEE (150 mg/kg b.w.) | 60.27 ± 2.74 a | 5.45 ± 0.32 a | 1.49 ± 0.12 | 1.31 ± 0.19 | 0.431 ± 0.024 a |
I/R model | 174.92 ± 10.73 b | 13.74 ± 1.04 b | 3.83 ± 0.12 b | 5.97 ± 0.52 b | 0.922 ± 0.081 b |
I/R+SMEE (50 mg/kg b.w.) | 129.11 ± 8.04 d | 10.13 ± 0.71 d | 2.09 ± 0.18 d | 3.68 ± 0.44 d | 0.739 ± 0.063 d |
I/R+SMEE (100 mg/kg b.w.) | 97.02 ± 4.77 d | 7.72 ± 0.66 d | 1.79 ± 0.14 d | 2.44 ± 0.27 d | 0.581 ± 0.066 d |
I/R+SMEE (150 mg/kg b.w.) | 88.52 ± 7.29 d | 6.89 ± 0.72 d | 1.52 ± 0.17 d | 1.53 ± 0.25 d | 0.531 ± 0.071 d |
I/R+tanshinone (25 mg/kg b.w.) | 99.21 ± 5.39 d | 7.25 ± 0.49 d | 1.82 ± 0.13 d | 2.66 ± 0.22 d | 0.605 ± 0.053 d |
Group | GSH (μmol/g protein) | MDA (nmol/mg protein) |
---|---|---|
sham | 2.55 ± 0.14 | 4.27 ± 0.31 |
SMEE (150 mg/kg b.w.) | 3.84 ± 0.19 b | 3.05 ± 0.26 b |
I/R model | 1.02 ± 0.09 b | 8.06 ± 0.48 b |
I/R+SMEE (50 mg/kg b.w.) | 1.52 ± 0.18 d | 6.83 ± 0.24 c |
I/R+SMEE (100 mg/kg b.w.) | 1.99 ± 0.13 d | 5.74 ± 0.28 d |
I/R+SMEE (150 mg/kg b.w.) | 2.37 ± 0.17 d | 4.52 ± 0.31 d |
I/R+tanshinone (25 mg/kg b.w.) | 1.86 ± 0.13 d | 6.08 ± 0.37 d |
Group | SOD | CAT | GSH-Px |
---|---|---|---|
sham | 167.2 ± 11.7 | 43.69 ± 3.19 | 39.77 ± 1.88 |
SMEE (150 mg/kg b.w.) | 208.4 ± 18.5 b | 58.21 ± 2.97 b | 51.63 ± 2.89 b |
I/R model | 85.1 ± 3.9 b | 26.13 ± 2.05 b | 20.14 ± 1.57 b |
I/R+SMEE (50 mg/kg b.w.) | 108.5 ± 8.4 c | 33.08 ± 1.77 c | 28.41 ± 1.93 c |
I/R+SMEE (100 mg/kg b.w.) | 143.7 ± 13.5 d | 40.61 ± 3.24 d | 35.09 ± 2.51 d |
I/R+SMEE (150 mg/kg b.w.) | 170.6 ± 15.7 d | 49.65 ± 2.91 d | 40.11 ± 2.67 d |
I/R+tanshinone (25 mg/kg b.w.) | 150.3 ± 11.3 d | 39.06 ± 1.86 d | 33.79 ± 1.85 d |
3. Discussion
4. Experimental
4.1. Plant Material
4.2. Extraction Method
4.3. Animals
4.4. Renal Pathological Examinations
4.5. Biochemical Analysis
4.6. Statistical Analysis
5. Conclusions
Acknowledgements
- Sample Availability: Samples of the compounds are available from the authors.
References and Notes
- Bouchier-Hayes, D.M.; Fitzpatrick, J.M. Ischemia-Reperfusion Injury; Grace, P.A., Mathie, R.T., Eds.; Blackwell Science: London, UK, 1999; pp. 71–81. [Google Scholar]
- Noiri, E.; Nakao, A.; Uchida, K.; Tsukahara, H.; Ohno, M.; Fujita, T.; Brodsky, S.; Goligorsky, M.S. Oxidative and nitrosative stress in acute renal ischemia. Am. J. Physiol. Renal Physiol. 2001, 281, F948–F957. [Google Scholar]
- Devarajan, P. Update on mechanisms of ischemic acute kidney injury. J. Am. Soc. Nephrol. 2006, 17, 1503–1520. [Google Scholar] [CrossRef]
- Rodrigo, R.; Bosco, C. Oxidative stress and protective effects of polyphenols: Comparative studies in human and rodent kidney. A review. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2006, 142, 317–327. [Google Scholar] [CrossRef]
- Bonventre, J.V.; Weinberg, J.M. Recent advances in the pathophysiology of ischemic acute renal failure. J. Am. Soc. Nephrol. 2003, 14, 2199–2210. [Google Scholar] [CrossRef]
- Kehrer, J.P. Free radicals as mediators of tissue injury and disease. Crit. Rev. Toxicol. 1993, 23, 21–48. [Google Scholar] [CrossRef]
- Nath, K.A.; Paller, M.S. Dietary deficiency of antioxidants exacerbates ischemic injury in the rat kidney. Kidney Int. 1990, 38, 1109–1117. [Google Scholar] [CrossRef]
- Bayati, A.; Kallskog, O.; Wolgast, M. The long-term outcome of postischaemic acute renal failure in the rat. I. A functional study after treatment with SOD and sucrose. Acta Physiol. Scand. 1990, 138, 25–33. [Google Scholar] [CrossRef]
- Castillo, M.; Toledo-Peryra, L.H.; Shapiro, E.; Guerra, E.; Prough, D.; Frantzis, P. Protective effect of allopurinol, catalase, or superoxide dismutase in the ischemic rat liver. Transplant. Proc. 1990, 22, 490–491. [Google Scholar]
- Greenwald, R.A. Superoxide dismutase and catalase as therapeutic agents for human diseases. Free Radic. Biol. Med. 1990, 8, 201–209. [Google Scholar] [CrossRef]
- Reilly, P.M.; Schiller, H.J.; Buckley, J.B. Pharmacologic approach to tissue injury mediated by free radicals and other reactive oxygen metabolites. Am. J. Surg. 1991, 161, 488–503. [Google Scholar] [CrossRef]
- Senga, S.; Onituka, A.; Hirose, H.; Yamamoto, K.; Niwa, K. Protective effect of liposomal encapsulated superoxide dismutase on ischemically injured liver in the rat. Transplant. Proc. 1990, 22, 2025–2026. [Google Scholar]
- Shanley, P.F.; White, C.W.; Avraham, K.B.; Groner, Y.; Burke, T.J. Use of transgenic animals to study disease models: Hyperoxic lung injury and ischemic acute renal failure in ‘high SOD’ mice. Renal Fail. 1992, 14, 391–394. [Google Scholar] [CrossRef]
- Yoshioka, T.; Homma, T.; Meyrick, B.; Takeda, M.; Moore-Jarrett, T.; Kon, V.; Ichikanea, I. Oxidants induce transcriptional activation of manganese superoxide dismutase in glomerular cells. Kidney Int. 1994, 46, 405–413. [Google Scholar] [CrossRef]
- Zhou, L.; Chow, M.; Zuo, Z. Improved quality control method for Danshen products–consideration of both hydrophilic and lipophilic active components. J. Pharm. Biomed. Anal. 2006, 41, 744–750. [Google Scholar] [CrossRef]
- Kang, D.G.; Oh, H.; Sohn, E.J.; Hur, T.Y.; Lee, K.C.; Kim, K.J.; Kim, T.Y.; Lee, H.S. Lithospermic acid B isolated from Salvia miltiorrhiza ameliorates ischemia/reperfusion-induced renal injury in rats. Life Sci. 2004, 75, 1801–1816. [Google Scholar] [CrossRef]
- Liu, G.T.; Zhang, T.M.; Wang, B.E.; Wang, Y.W. Protective action of seven natural phenolic compounds against peroxidative damage to biomembranes. Biochem. Pharmacol. 1992, 43, 147–152. [Google Scholar]
- Robinette, M.; Zaltsman, J.; Bear, R. An analysis of predictors of long-term cadaveric renal allograft survival. Clin. Transplant 1995, 9, 282–288. [Google Scholar]
- Sondeen, J.L.; Dubick, M.A.; Yu, Y.; Majumdar, A.P. Hemorrhage and renal ischemia-reperfusion upregulates the epidermal growth factor receptor in rabbit duodenum. J. Lab. Clin. Med. 1999, 134, 641–648. [Google Scholar] [CrossRef]
- Karimi, G.; Ramezani, M.; Tahoonian, Z. Cisplatin Nephrotoxicity and Protection by Milk Thistle Extract in Rats. Evid. Based Complement. Alternat. Med. 2005, 2, 383–386. [Google Scholar] [CrossRef]
- Ganesan, R.; Reeves, W.B. Inflammatory cytokines in acute renal failure. Kidney Int. 2004, 66, S56–S61. [Google Scholar]
- Shi, N.; Wu, M.-P. Apolipoprotein A-I attenuates renal ischemia/reperfusion injury in rats. J. Biomed. Sci. 2008, 15, 577–583. [Google Scholar] [CrossRef]
- Furuichi, K.; Wada, T.; Yokoyama, H.; Kobayashi, K.I. Role of Cytokines and Chemokines in Renal Ischemia-Reperfusion Injury. Drug News Perspect. 2002, 5, 477–482. [Google Scholar]
- Clark, W.M.; Rinker, L.G.; Lessov, N.S.; Hazel, K.; Hill, J.K.; Stenzel-Poore, M.; Eckenstein, F. Lack of interleukin-6 expression is not protective against focal central nervous system ischemia. Stroke 2000, 31, 1715–1720. [Google Scholar] [CrossRef]
- Yang, R.; Han, X.; Uchiyama, T.; Watkins, S.K.; Yaguchi, A.; Delude, R.L.; Fink, M.P. IL-6 is essential for development of gut barrier dysfunction after hemorrhagic shock and resuscitation in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2003, 285, G621–G629. [Google Scholar]
- Kukielka, G.L.; Youker, K.A.; Michael, L.H.; Kumar, A.G.; Ballantyne, C.M.; Smith, C.W.; Entman, M.L. Role of early reperfusion in the induction of adhesion molecules and cytokines in previously ischemic myocardium. Mol. Cell. Biochem. 1995, 147, 5–12. [Google Scholar] [CrossRef]
- Vila, N.; Castillo, J.; Davalos, A.; Esteve, A.; Planas, A.M.; Chamorro, A. Levels of anti-inflammatory cytokines and neurological worsening in acute ischemic stroke. Stroke 2003, 34, 671–675. [Google Scholar] [CrossRef]
- Ramesh, G.; Brian Reeves, W. Inflammatory cytokines in acute renal failure. Kidney Int. 2004, 66, S56–S61. [Google Scholar]
- Wolff, B.; Burns, A.R.; Middleton, J.; Rot, A. Endothelial cell “memory” of inflammatory stimulation: Human venular endothelial cells store interleukin 8 in Weibel-Palade bodies. J. Exp. Med. 1998, 188, 1757–1762. [Google Scholar] [CrossRef]
- Utgaard, J.O.; Jahnsen, F.L.; Bakka, A.; Brandtzaeg, P.; Haraldsen, G. Rapid secretion of prestored interleukin 8 from Weibel-Palade bodies of microvascular endothelial cells. J. Exp. Med. 1998, 188, 1751–1756. [Google Scholar] [CrossRef]
- Schulz, R. Plasmalogens, nitroxide free radicals, and ischemia-reperfusion injury in the heart. Adv. Lipobiol. 1996, 1, 193–214. [Google Scholar] [CrossRef]
- Yoshioka, T.; Ichikawa, I. Glomerular dysfunction induced by polymorphonuclear leukocyte-derived reactive species. Am. J. Physiol. 1989, 257, F53–F59. [Google Scholar]
- Bird, J.E.; Milhoan, K.; Wilson, C.B.; Young, S.G.; Mundy, C.A.; Parthasarathy, S.; Blantz, R.C. Ischemic acute renal failure and antioxidant therapy in the rat. The relation between glomerular and tubular dysfunction. J. Clin. Invest. 1987, 81, 1630–1638. [Google Scholar]
- Paller, M.S. Renal work, glutathione and susceptibility to free radical-mediated post-ischemic injury. Kidney Int. 1988, 33, 843–849. [Google Scholar] [CrossRef]
- Burns, A.T.; Davies, D.R.; McLaren, A.J.; Cerundolo, L.; Morris, P.J.; Fuggle, S.V. Apoptosis in ischemia/reperfusion injury of human renal allografts. Transplantation 1998, 66, 872–876. [Google Scholar] [CrossRef]
- Lee, J.Y.; Lott, J.A.; Kauffman, E.M.; Sharma, H.M. Effect of herbal mixture MAK-4 on organ functions in WHHL rabbits. Biochem. Arch. 1997, 13, 285–296. [Google Scholar]
- Kadkhodaee, M.; Gobe, G.C.; Willgoss, D.A.; Endre, Z.H. DNA fragmentation reduced antioxidants following ischemia-reperfusion in the isolated perfused rat kidney. Nephrology 1998, 4, 163–175. [Google Scholar]
- Witenberg, B.; Kalir, H.H.; Raviv, Z.; Kletter, Y.; Kravtsov, V.; Fabian, I. Inhibition by ascorbic acid of apoptosis induced by oxidative stress in HL-60 myeloid leukemia cells. Biochem. Pharmacol. 1999, 57, 823–832. [Google Scholar]
- Joo, J.D.; Kim, M.; D’Agati, V.D.; Thomas Lee, H. Ischemic Preconditioning Provides Both Acute and Delayed Protection against Renal Ischemia and Reperfusion Injury in Mice. J. Am. Soc. Nephrol. 2006, 17, 3115–3123. [Google Scholar] [CrossRef]
- Scaduto, R.C., Jr.; Gattone, V.H.; Grotyohann, L.W.; Wertz, J.; Martin, L.F. Effect of an altered glutathione content on renal ischemic injury. Am. J. Physiol. 1988, 255, F911–F921. [Google Scholar]
- Angel, M.F.; Ramasastry, S.S.; Swartz, W.M.; Narayanan, K.; Kuhns, D.B.; Basford, R.E.; Futrell, J.W. The critical relationship between free radicals and degrees of ischemia: Evidence for tissue intolerance of marginal perfusion. Plast. Reconstr. Surg. 1988, 81, 233–259. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosenbrough, N.J.; Farr, A.C.; Randall, R.J. Protein measurement with the folin phenol regent. J. Biol. Chem. 1951, 913, 265–275. [Google Scholar]
- Kakkar, P.; Das, B.; Viswanthan, P.N. A modified spectrophotometric assay of superoxide dismutase (SOD). Indian J. Biochem. Biophys. 1984, 21, 130–132. [Google Scholar]
- Lartillot, S.; Kedziora, P.; Athias, A. Purification and characterization of a new fungal catalase. Prep. Biochem. 1988, 18, 241–246. [Google Scholar] [CrossRef]
- Bergmeyer, H.U. Methods of Enzymatic Analysis, 2nd ed; Academic Press: New York, NY, USA, 1974; Volume 1, pp. 438–442. [Google Scholar]
- Mannervik, B. Glutathione peroxidase. Meth. Enzymol. 1985, 113, 490–495. [Google Scholar]
- Flohè, L.; Gunzler, W.A. Assay of glutathione peroxidase. Meth. Enzymol. 1984, 105, 114–121. [Google Scholar]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Chen, G.; Fu, Y.; Wu, X. Protective Effect of Salvia miltiorrhiza Extract Against Renal Ischemia-Reperfusion-Induced Injury in Rats. Molecules 2012, 17, 1191-1202. https://doi.org/10.3390/molecules17021191
Chen G, Fu Y, Wu X. Protective Effect of Salvia miltiorrhiza Extract Against Renal Ischemia-Reperfusion-Induced Injury in Rats. Molecules. 2012; 17(2):1191-1202. https://doi.org/10.3390/molecules17021191
Chicago/Turabian StyleChen, Gang, Yunrui Fu, and Xiaohou Wu. 2012. "Protective Effect of Salvia miltiorrhiza Extract Against Renal Ischemia-Reperfusion-Induced Injury in Rats" Molecules 17, no. 2: 1191-1202. https://doi.org/10.3390/molecules17021191
APA StyleChen, G., Fu, Y., & Wu, X. (2012). Protective Effect of Salvia miltiorrhiza Extract Against Renal Ischemia-Reperfusion-Induced Injury in Rats. Molecules, 17(2), 1191-1202. https://doi.org/10.3390/molecules17021191