A Facile Synthesis for Novel Loperamide Analogs as Potential μ Opioid Receptor Agonists
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental
3.1. General
4. Conclusions
Supplementary Materials
Acknowledgments
References
- Davis, M.P. Evidence from Basic Research for Opioid Combinations. Expert Opin. Drug Discov. 2012, 7, 165–178. [Google Scholar] [CrossRef] [PubMed]
- Chevlen, E. Opioids: A review. Curr. Pain Headache Rep. 2003, 7, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Lord, J.A.; Waterfield, A.A.; Hughes, J.; Kosterlitz, H.W. Endogenous Opioid Peptides: Multiple Agonists and Receptors. Nature 1977, 267, 495–499. [Google Scholar] [CrossRef] [PubMed]
- Pasternak, G.W. Multiple Opiate Receptors: [3H]-Ethylketocyclazocine Receptor Binding and Ketocyclazocine Analgesia. Proc. Natl. Acad. Sci. USA 1980, 77, 3691–3694. [Google Scholar] [CrossRef] [PubMed]
- Tokuyama, S.; Inoue, M.; Fuchigami, T.; Ueda, H. Lack of Tolerance in Peripheral Opioid Analgesia in Mice. Life Sci. 1998, 62, 1677–1681. [Google Scholar] [CrossRef]
- Bigliardi, P.L.; Bigliardi-Qi, M.; Buechner, S.; Rufli, T. Expression of mu-Opiate Receptor in Human Epidermis and Keratinocytes. J. Invest. Dermatol. 1998, 111, 297–301. [Google Scholar] [CrossRef] [PubMed]
- Decker, M.; Fulton, B.F.; Zhang, B.; Knapp, B.I.; Bidlack, J.M.; Neumeyer, J.L. Univalent and Bivalent Ligands of Butorphan: Characteristics of the Linking Chain Determine the Affinity and Potency of Such Opioid Ligands. J. Med. Chem. 2009, 52, 7389–7396. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Knapp, B.I.; Bidlack, J.M.; Neumeyer, J.L. Synthesis and Preliminary in Vitro Investigation of Bivalent Ligands Containing Homo- and Heterodimeric Pharmacophores at mu, delta, and kappa Opioid Receptors. J. Med. Chem. 2006, 49, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Awouters, F.; Megens, A.; Verlinden, M.; Schuurkes, J.; Niemegeers, C.; Janssen, P.A. Loperamide: Survey of Studies on Mechanism of its Antidiarrheal Activity. Dig. Dis. Sci. 1993, 38, 977–995. [Google Scholar] [CrossRef] [PubMed]
- Sato, S.; Komoto, T.; Kanamaru, Y.; Kawamoto, N.; Okada, T.; Kaiho, T.; Mogi, K.; Morimoto, S.; Umehara, N.; Koda, T.; et al. New mu-Opioid Receptor Agonists with Phenoxyacetic Acid Moiety. Chem. Pharm. Bull. 2002, 50, 292–297. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Miller, W.; Shan, S.; Valenzano, K. Design and parallel synthesis of piperidine libraries targeting the nociceptin (N/OFQ) receptor. Bioorg. Med. Chem. Lett. 2003, 13, 3247–3252. [Google Scholar] [CrossRef]
- Komoto, T.; Okada, T.; Sato, S.; Niino, Y.; Oka, T.; Sakamoto, T. New mu-Opioid Receptor Agonists with Piperazine Moiety. Chem. Pharm. Bull. 2001, 49, 1314–1320. [Google Scholar] [CrossRef] [PubMed]
- Valenzano, K.J.; Miller, W.; Chen, Z.; Shan, S.; Crumley, G.; Victory, S.F.; Davies, E.; Huang, J.C.; Allie, N.; Nolan, S.J.; et al. DiPOA ([8-(3,3-diphenylpropyl)-4-oxo-1-phenyl-1,3,8-triazaspiro[4.5]dec-3-yl]-acetic acid), a Novel, Systemically Available, and Peripherally Restricted Mu Opioid Agonist with Antihyperalgesic Activity: II. In Vivo Pharmacological Characterization in the Rat. J. Pharmacol. Exp. Ther. 2004, 310, 793–799. [Google Scholar]
- Valenzano, K.J.; Miller, W.; Chen, Z.; Shan, S.; Crumley, G.; Victory, S.F.; Davies, E.; Huang, J.C.; Allie, N.; Nolan, S.J.; et al. DiPOA ([8-(3,3-Diphenylpropyl)-4-oxo-1-Phenyl-1,3,8-Triaza-spiro[4.5]Dec-3-yl]Acetic Acid), A Novel, Systemically Available, and Peripherally Restricted mu Opioid Agonist with Antihyperalgesic Activity: I. In Vitro Pharmacological Characterization and Pharmacokinetic Properties. J. Pharmacol. Exp. Ther. 2004, 310, 783–792. [Google Scholar] [PubMed]
- Di Bosco, A.M.; Grieco, P.; Diurno, M.V.; Campiglia, P.; Novellino, E.; Mazzoni, O. Binding Site of Loperamide: Automated Docking of Loperamide in Human mu- and delta-opioid receptors. Chem. Biol. Drug Des. 2008, 71, 328–335. [Google Scholar] [CrossRef] [PubMed]
- Khan, P.M.; Correa, R.G.; Divlianska, D.B.; Peddibhotla, S.; Sessions, E.H.; Magnuson, G.; Brown, B.; Suyama, E.; Yuan, H.; Mangravita-Novo, A.; et al. Identification of Inhibitors of NOD1-Induced Nuclear Factor-κB Activation. ACS Med. Chem. Lett. 2011, 2, 780–785. [Google Scholar] [CrossRef] [PubMed]
- Bao, X.; Lu, S.; Simeon, F.G.; Victor, W.P. Synthesis of a Prospective 18F-labeled Tracer for Imaging P-Glycoprotein Function. J. Labelled Comp. Radiopharm. 2009, 52, S350. [Google Scholar]
- Lazarova, N.; Zoghbi, S.S.; Hong, J.; Seneca, N.; Tuan, E.; Gladding, R.L.; Liow, J.S.; Taku, A.; Innis, R.B.; Pike, V.W. Synthesis and Evaluation of [N-methyl-11C]N-Desmethyl-loperamide as a New and Improved PET Radiotracer for Imaging P-gp Function. J. Med. Chem. 2008, 51, 6034–6043. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Cauchon, E.; Chefson, A.; Dolman, S.; Ducharme, Y.; Dubé, D.; Falgueyret, J.P.; Fournier, P.A.; Gagné, S.; Gallant, M.; et al. Renin inhibitors for the treatment of hypertension: Design and optimization of a novel series of tertiary alcohol-bearing piperidines. Bioorg. Med. Chem. Lett. 2011, 21, 3976–3981. [Google Scholar] [CrossRef] [PubMed]
- Pàmies, O.; Bäckvall, J.E. Efficient Lipase-Catalyzed Kinetic Resolution and Dynamic Kinetic Resolution of β-Hydroxy Nitriles. Correction of Absolute Configuration and Transformation to Chiral β-Hydroxy Acids and γ-Amino Alcohols. Adv. Synth. Catal. 2002, 344, 947–952. [Google Scholar] [CrossRef]
- Raparti, V.; Chitre, T.; Bothara, K.; Danqre, S.; Khachane, C.; Gore, S.; Deshmane, B. Novel 4-(morpholin-4-yl)-N′-(arylidene)benzohydrazides: Synthesis, Antimycobacterial Activity and Qsar Investigations. Eur. J. Med. Chem. 2009, 44, 3954–3960. [Google Scholar] [CrossRef] [PubMed]
- Einsiedel, J.; Schoerner, C.; Gmeiner, P. Synthesis of Dihydrooxazole Analogues Derived from Linezolid. Tetrahedron 2003, 59, 3403–3407. [Google Scholar] [CrossRef]
- Allen, C.L.; Chhatwal, A.R.; Williams, J.M. Direct Amide Formation from Unactivated Carboxylic Acids and Amines. Chem. Commun. 2012, 48, 666–668. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds 5–7, 10b, 12a–c, 13b, 14b, 18 and 19 are available from the authors. |
Entry | Ratio 8:9b:DIPEA | Reaction conditions | Yield *10b |
---|---|---|---|
1 | 1:1.5:0 | THF, reflux, 2 days | - |
2 | 1:1:3 | THF, reflux, 2 days | - |
3 | 1:1:3 | CH3CN, 70 °C, 30 h | - |
4 | 1:1:3 | CH3CN, 85 °C, 30 h | Trace |
5 | 1:1:3 | CH3CN, 105 °C, 30 h | 6% |
Entry | Catalyst | Reaction conditions | Yield (%) * | ||
---|---|---|---|---|---|
10b | 15b | 14b | |||
1 | NaOH a | CH3OH/H2O, Reflux, 30 h | trace | - | - |
2 | NaOH a | H2O, Reflux, 30 h | trace | - | - |
3 | HCl b | 1,4-Dioxane, Reflux, 16 h | - | 20 | 66 |
4 | H2SO4 c | H2O, 100 °C, 16 h | - | 23 | 72 |
5 | H2O2 d/NaOH a | H2O, 80 h, 20 h | 7 | - | - |
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Bao, X.; Liu, D.; Jin, Y.; Yang, Y. A Facile Synthesis for Novel Loperamide Analogs as Potential μ Opioid Receptor Agonists. Molecules 2012, 17, 14288-14297. https://doi.org/10.3390/molecules171214288
Bao X, Liu D, Jin Y, Yang Y. A Facile Synthesis for Novel Loperamide Analogs as Potential μ Opioid Receptor Agonists. Molecules. 2012; 17(12):14288-14297. https://doi.org/10.3390/molecules171214288
Chicago/Turabian StyleBao, Xiaofeng, Duliang Liu, Yanyan Jin, and Yao Yang. 2012. "A Facile Synthesis for Novel Loperamide Analogs as Potential μ Opioid Receptor Agonists" Molecules 17, no. 12: 14288-14297. https://doi.org/10.3390/molecules171214288
APA StyleBao, X., Liu, D., Jin, Y., & Yang, Y. (2012). A Facile Synthesis for Novel Loperamide Analogs as Potential μ Opioid Receptor Agonists. Molecules, 17(12), 14288-14297. https://doi.org/10.3390/molecules171214288