Tin (IV) Chloride-Promoted One-Pot Synthesis of Novel Tacrine Analogues
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental
3.1. General
3.2. Typical procedure
4. Conclusions
Acknowledgements
References and Notes
- Bartus, R.T.; Dean, R.L.; Beer, B.; Lippa, A.S. The Cholinergic Hypothesis of Geriatric Memory Dysfunction. Science 1982, 217, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Davis, K.L.; Powchik, P. Tacrine. Lancet 1995, 345, 625–630. [Google Scholar] [CrossRef]
- Gracon, S.I.; Berghoff, W.G. Pharmacological Treatment of Alzheimer’s Disease. Molecular and Neurobiological Foundations; Brioni, J.D., Decker, M.W., Eds.; Wiley-Liss Inc: New York, NY, USA, 1997; pp. 389–408. [Google Scholar]
- Carlier, P.R.; Han, Y.F.; Chow, E.S.H.; Li, C.P.L.; Wang, H.; Lieu, Y.P.; Wong, H.S.; Pang, Y.P. Evaluation of Short-tether Bis-THA AChE Inhibitors. A Further Test of the Dual Binding Site Hypothesis. Bioorg. Med. Chem. 1999, 7, 351–357. [Google Scholar] [CrossRef]
- Camps, P.; Achab, R.E.; Morral, J.; Torrero, D.M.; Badia, A.; Banos, J.E.; Vivas, N.M.; Barril, X.; Orozco, M.; Luque, F.J. New Tacrine-huperzine A Hybrids (Huprines): Highly Potent Tight-binding Acetylcholinesterase Inhibitors of Interest for the Treatment Alzheimer’s Disease. J. Med. Chem. 2000, 43, 4657–4666. [Google Scholar] [CrossRef] [PubMed]
- McKenna, M.; Proctor, G.R.; Young, L.C.; Harvey, A.L. Novel Tacrine Analogues for Potential Use against Alzheimer’s Disease: Potent and Selective Acetylcholinesterase Inhibitors and 5-HT Uptake Inhibitors. J. Med. Chem. 1997, 40, 3516–3523. [Google Scholar] [CrossRef] [PubMed]
- Savini, L.; Campiani, G.; Gaeta, A.; Pellerano, C.; Fattorusso, C.; Chiasserini, L.; Fedorko, J.M.; Saxena, A. Novel and Potent Tacrine-related Hetero- and Homobivalent Ligands for Acetylcholinesterase and Butyrylcholinesterase. Bioorg. Med. Chem. Lett. 2001, 11, 1779–1782. [Google Scholar] [CrossRef]
- Marco, J.L.; Rios, C.; Carreiras, M.C.; Banos, J.E.; Badia, A.; Vivas, N.M. Synthesis and Acetylcholinesterase/butyrylcholinesterase Inhibition Activity of New Tacrine-like Analogues. Bioorg. Med. Chem. 2001, 9, 727–732. [Google Scholar] [CrossRef]
- Tabarrini, O.; Cecchetti, V.; Temperini, A.; Filipponi, E.; Lamperti, M.G.; Fravoloni, A. Velnacrine Thiaanalogues as Potential Agents for Treating Alzheimer’s Disease. Bioorg. Med. Chem. 2001, 9, 2921–2928. [Google Scholar] [CrossRef]
- Rios, C.; Marco, J.L.; Carreiras, M.D.C.; Chinchon, P.M.; Garcia, A.G.; Villarroya, M. Novel Tacrine Derivatives that Block Neuronal Calcium Channels. Bioorg. Med. Chem. 2002, 10, 2077–2088. [Google Scholar] [CrossRef]
- Lewis, W.G.; Green, L.G.; Grynszpan, F.; Radic, Z.; Carlier, P.R.; Taylor, P.; Finn, M.G.; Sharpless, K.B. Click Chemistry in Situ: Acetylcholinesterase as a Reaction Vessel for the Selective Assembly of a Femtomolar Inhibitor from an Array of Building Blocks. Angew. Chem. Int. Ed. 2002, 41, 1053–1057. [Google Scholar] [CrossRef]
- Marco, J.L.; Rios, C.; Garcia, A.G.; Villarroya, M.; Carreiras, M.C.; Martins, C.; Eleuterio, A.; Morreale, A.; Orozco, M.; Luque, F.J. Synthesis, Biological Evaluation and Molecular Modelling of Diversely Functionalized Heterocyclic Derivatives as Inhibitors of Acetyl-cholinesterase/butyrylcholinesterase and Modulators of Ca2+ Channels and Nicotinic Receptors. Bioorg. Med. Chem. 2004, 12, 2199–2218. [Google Scholar] [CrossRef] [PubMed]
- Leon, R.; Marco-Contelles, J.; Garcia, A.G.; Villarroya, M. Synthesis, Acetylcholinesterase Inhibition and Neuroprotective Activity of New Tacrine Analogues. Bioorg. Med. Chem. 2005, 13, 1167–1175. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.; Kraus, B.; Lehmann, J.; Heilmann, J.; Zhang, Y.; Deckera, M. Design and Synthesis of Tacrine–ferulic Acid Hybrids as Multi-potent Anti-Alzheimer Drug Candidates. Bioorg. Med. Chem. Lett. 2008, 18, 2905–2909. [Google Scholar] [CrossRef] [PubMed]
- Marco-Contelles, J.; Leon, R.; de los Rios, C.; Guglietta, A.; Terencio, J.; Lopez, M.G.; Garcia, A.G.; Villarroya, M. Novel Multipotent Tacrine-Dihydropyridine Hybrids with Improved Acetylcholinesterase Inhibitory and Neuroprotective Activities as Potential Drugs for the Treatment of Alzheimer’s Disease. J. Med. Chem. 2006, 49, 7607–7610. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.; Appenroth, D.; Decker, M.; Kiehntopf, M.; Roegler, C.; Deufel, T.; Fleck, C.; Peng, S.; Zhang, Y.; Lehmann, J. Synthesis and Biological Evaluation of NO-Donor-Tacrine Hybrids as Hepatoprotective Anti-Alzheimer Drug Candidates. J. Med. Chem. 2008, 51, 713–716. [Google Scholar] [CrossRef] [PubMed]
- Elsinghorst, P.W.; Gonzalez Tanarro, C.M.; Gutschow, M. Novel Heterobivalent Tacrine Derivatives as Cholinesterase Inhibitors with Notable Selectivity toward Butyrylcholinesterase. J. Med. Chem. 2006, 49, 7540–7544. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.N.; Zhang, A.J.; Ding, L.S. Facile Synthesis of Novel Tacrine Analogues. J. Chem. Res. 2009, 562–564. [Google Scholar] [CrossRef]
- Maguire, M.P.; Sheets, K.R.; McVety, K.; Spada, A.P.; Zilberstein, A. A New Series of PDGF Receptor Tyrosine Kinase Inhibitors: 3-Substituted Quinoline Derivatives. J. Med. Chem. 1994, 37, 2129–2137. [Google Scholar] [CrossRef] [PubMed]
- Yadav, J.S.; Rao, P.P.; Sreenu, D.; Rao, R.S.; Kumar, V.N.; Nagaiah, K.; Prasad, A.R. Sulfamic Acid: an Efficient, Cost-effective and Recyclable Solid Acid Catalyst for the Friedlander Quinoline Synthesis. Tetrahedron Lett. 2005, 46, 7249–7253. [Google Scholar] [CrossRef]
- Cabrera, G.; Márquez, C. Lewis Acids Mediated Synthesis of 4-Aminoquinolines. Acta Científica Venezolana 1999, 50, 173–176. [Google Scholar] [PubMed]
- Holla, B.S.; Mahalinga, M.; Karthikeyan, M.S.; Akberali, P.M.; Shetty, N.S. Synthesis of Some Novel Pyrazolo[3,4-d]pyrimidine Derivatives as Potential Antimicrobial Agents. Bioorg. Med. Chem. 2006, 14, 2040–2047. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of compounds 3a-p are available from the authors. |
Entry | Catalyst | Time(h) | Yield(%)b |
---|---|---|---|
1 2 3 4 5 6 | CuCl CuCl2 AlCl3 ZnCl2 TiCl4 SnCl4 | 3 3 3 3 3 3 | 0 0 36 23 43 78 |
Entry | Solvent | Time (h) | Yield (%)b |
---|---|---|---|
1 2 3 4 5 | DCM DCE THF Toluene DMF | 3 3 3 3 3 | 53 68 51 78 0 |
Entry | R1 | R2 | Product(3) | Yield(%)b |
---|---|---|---|---|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | H 4-CH3 3-CH3 4-Cl 3-Cl 2-Cl 4-NO2 2,4-NO2 H 4-CH33 -CH3 4-Cl 3-Cl 2-Cl 4-NO2 2,4-NO2 | Me Me Me Me Me Me Me Me Et Et Et Et Et Et Et Et | 3a 3b 3c 3d 3e 3f 3g 3h 3i 3j 3k 3l 3m 3n 3o 3p | 78 75 70 74 72 65 62 58 76 74 71 75 73 64 60 57 |
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Hu, H.; Song, L.; Fang, Q.; Zheng, J.; Meng, Z.; Luo, Y. Tin (IV) Chloride-Promoted One-Pot Synthesis of Novel Tacrine Analogues. Molecules 2011, 16, 1878-1887. https://doi.org/10.3390/molecules16021878
Hu H, Song L, Fang Q, Zheng J, Meng Z, Luo Y. Tin (IV) Chloride-Promoted One-Pot Synthesis of Novel Tacrine Analogues. Molecules. 2011; 16(2):1878-1887. https://doi.org/10.3390/molecules16021878
Chicago/Turabian StyleHu, Huanan, Liangfu Song, Qianqian Fang, Junjun Zheng, Zhiwei Meng, and Yiting Luo. 2011. "Tin (IV) Chloride-Promoted One-Pot Synthesis of Novel Tacrine Analogues" Molecules 16, no. 2: 1878-1887. https://doi.org/10.3390/molecules16021878
APA StyleHu, H., Song, L., Fang, Q., Zheng, J., Meng, Z., & Luo, Y. (2011). Tin (IV) Chloride-Promoted One-Pot Synthesis of Novel Tacrine Analogues. Molecules, 16(2), 1878-1887. https://doi.org/10.3390/molecules16021878