Synergistic Antibacterial and Antibiotic Effects of Bisbenzylisoquinoline Alkaloids on Clinical Isolates of Methicillin-Resistant Staphylococcus Aureus (MRSA)
Abstract
:1. Introduction
2. Results and Discussion
Agents a | MIC/MBCs of ATCC 25923 (μg/mL) | MIC/MBCs of MRSA strains (μg/mL) | |||
---|---|---|---|---|---|
Range | 50% b | 90% | |||
Tet | 64/128 | 64–128/256–1024 | 128/512 | 128/1024 | |
d-Tet | 32/64 | 64–128/256–1024 | 64/512 | 128/1024 | |
AMP | 32/64 | 32–128/256–512 | 64/512 | 128/512 | |
AZM | >1,000/ nt | 2,000–4,000/ nt c | 4,000/ nt | 4,000/ nt | |
CFZ | 64/128 | 128–256/ nt | 128/ nt | 256/ nt | |
LEV | 4/8 | 8–32/32–64 | 16/64 | 16/64 | |
VAN | 0.96/1.92 | 0.96/1.92 | 0.96/1.92 | 0.96/1.92 |
Agent a | Range | 50%b | 90% | |
---|---|---|---|---|
Tet/AMP | MIC (μg/mL) | 64–128/32–128 | 64/64 | 128/64 |
Rd% c | 0–50/0–50 | 0/0 | 0/0 | |
FICI (E d) | 1.5(I)–2(I) | 2(I) | 2(I) | |
d-Tet/AMP | MIC (μg/mL) | 64–128/32–128 | 64/64 | 128/128 |
Rd% | 0–50/0–0 | 0/0 | 0/0 | |
FICI (E) | 1.5(I)–2(I) | 2(I) | 2(I) | |
Tet/AZM | MIC (μg/mL) | 64–128/2000–4000 | 64/4000 | 128/4000 |
Rd% | 0–50/0–0 | 0/0 | 0/0 | |
FICI (E) | 2(I)–2(I) | 2(I) | 2(I) | |
d-Tet/AZM | MIC (μg/mL) | 64–128/2000–4000 | 64/4000 | 128/4000 |
Rd% | 0–0/0–0 | 0/0 | 0/0 | |
FICI (E) | 2(I)–2(I) | 2(I) | 2(I) | |
Tet/CFZ | MIC (μg/mL) | 8–32/16–64 | 8/32 | 32/64 |
Rd% | 75–94/75–88 | 88/75 | 75/75 | |
FICI (E) | 0.25(S)–0.5(S) | 0.375(S) | 0.5(S) | |
d-Tet/CFZ | MIC (μg/mL) | 8–64/16–64 | 16/32 | 32/64 |
Rd% | 50–88/75–94 | 75/75 | 75/75 | |
FICI (E) | 0.188(S)–0.625(A) | 0.5(A) | 0.5(A) | |
Tet/LEV | MIC (μg/mL) | 64–128/8–32 | 64/16 | 128/16 |
Rd% | 0–50/0–50 | 0/0 | 0/0 | |
FICI (E) | 1.5(I)–2(I) | 1.5(I) | 2(I) | |
d-Tet/LEV | MIC (μg/mL) | 32–128/8–32 | 64/16 | 128/16 |
Rd% | 0–50/0–50 | 0/0 | 0/0 | |
FICI (E) | 1.5(I)–2(I) | 1.5(I) | 2(I) |
3. Experimental
3.1. Bacterial Strains and Culture Media
3.2. Antibacterial Agents
3.3. Susceptibility Testing
3.4. Synergy Testing
4. Conclusions
Acknowledgments
Conflict of Interest
References and Notes
- Boucher, H.W.; Talbot, G.H.; Bradley, J.S.; Edwards, J.J.E.; Gilbert, D.; Rice, R.B.; Scheld, M.; Spellberg, B.; Bartlett, J. No drugs, no ESKAPE! An update from the Infectious Diseases Society of America. Clin. Infect. Dis. 2009, 48, 1–12. [Google Scholar] [CrossRef]
- Mahady, G.B. Medicinal plants for the prevention and treatment of bacterial infections. Curr. Pharm. Des. 2005, 11, 2405–2427. [Google Scholar] [CrossRef]
- Gibbons, S. Anti-staphylococcal plant natural products. Nat. Prod. Rep. 2004, 21, 263–277. [Google Scholar] [CrossRef]
- Gibbons, S. Phytochemicals for bacterial resistance—Strengths, weaknesses and opportunities. Planta Med. 2008, 74, 594–602. [Google Scholar] [CrossRef]
- Tegos, G.; Stermitz, F.R.; Lomovskaya, O.; Lewis, K. Multidrug pump inhibitors uncover remarkable activity of plant antimicrobials. Antimicrob. Agents Chemother. 2002, 46, 3133–3141. [Google Scholar] [CrossRef]
- Hemaiswarya, S.; Kruthiventi, A.K.; Doble, M. Synergism between natural products and antibiotics against infectious diseases. Phytomedicine 2008, 15, 639–652. [Google Scholar] [CrossRef]
- Zuo, G.Y.; Meng, F.Y.; Hao, X.Y.; Zhang, Y.L.; Wang, G.C.; Xu, G.L. Antibacterial Alkaloids from Chelidonium majus Linn (Papaveraceae) against clinical isolates of methicillin-resistant Staphylococcus aureus. J. Pharm. Pharmaceut. Sci. 2008, 11, 90–94. [Google Scholar]
- Zuo, G.Y.; Wang, G.C.; Zhao, Y.B.; Xu, G.L.; Hao, X.Y.; Han, J.; Zhao, Q. Screening of Chinese medicinal plants for inhibition against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA). J. Ethnopharmacol. 2008, 120, 287–290. [Google Scholar] [CrossRef]
- Meng, F.Y.; Zuo, G.Y.; Hao, X.Y.; Wang, G.C.; Xiao, H.T.; Jiquan Zhang, J.Q.; Xu, G.L. Antifungal activity of the benzo[c]phenanthridine alkaloids from Chelidonium majus Linn against resistant clinical yeast isolates. J. Ethnopharmacol. 2009, 125, 494–496. [Google Scholar] [CrossRef]
- McDonald, M.; Dougall, A.; Holt, D.; Huygens, F.; Oppedisano, F.; Giffard, P.M.; Inman-Bamber, J.; Stephens, A.J.; Towers, R.; Carapetis, J.R.; Currie, B.J. Use of a single nucleotide polymorphism genotyping system to demonstrate the unique epidemiology of methicillin-resistant Staphylococcus aureus in remote aboriginal communities. J. Clin. Microbiol. 2006, 44, 3720–3727. [Google Scholar]
- Hu, Z.Q.; Zhao, W.H.; Asano, N.; Yoda, Y.; Hara, Y.; Shimamura, T. Epigallocatechin gallate synergistically enhances the activity of carbapenems against methicillin resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2002, 46, 558–560. [Google Scholar]
- Zhang, K.; McClure, J.A.; Elsayed, S.; Louie, T.; Conly, J.M. Novel multiplex PCR assay for characterization and concomitant subtyping of staphylococcal cassette chromosome mec types I to V in methicillin-resistant Staphylococcus aureus. J. Clin. Microbiol. 2005, 43, 5026–5033. [Google Scholar] [CrossRef]
- Li, X.N.; Yan, H.X.; Sha, N.; Hua, H.M.; Wu, L.J.; Guo, D.A. Isolation and identification of alkaloids from the root of Stephania tetrandra. J. Shenyang Pham. Univ. 2009, 26, 430–433. [Google Scholar]
- Clinical Laboratory Standards Institute, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically-Seventh Edition; CLSI: Wayne, PA, USA, 2006; Approved standard M7-A7.
- Clinical Laboratory Standards Institute, Methods for Determining Bactericidal Activity Antimicrobial Agents; CLSI (formerly NCCLS): Wayne, PA, USA, 1999; Document M26-A.
- Yu, H.H.; Kim, K.J.; Cha, J.D.; Kim, H.K.; Lee, Y.E.; Choi, N.Y.; You, Y.O. Antimicrobial activity of berberine alone and in combination with ampicillin or oxacillin against methicillin-resistant Staphylococcus aureus. J. Med. Food 2005, 8, 454–461. [Google Scholar] [CrossRef]
- Chin, J.N.; Jones, R.N.; Sader, H.S.; Savage, P.B.; Rybak, M.J. Potential synergy activity of the novel ceragenin, CAS-13, against clinical isolates of Pseudomonas aeruginosa, including multidrug-resistant P. aeruginosa. J. Antimicrob. Chemother. 2008, 61, 365–370. [Google Scholar]
- Wagner, H.; Ulrich-Merzenich, G. Synergy research, approaching a new generation of phytopharmaceuticals. Phytomedicine 2009, 16, 97–110. [Google Scholar] [CrossRef]
- Sample Availability: Samples of Tet and d-Tet are available from the authors.
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Zuo, G.-Y.; Li, Y.; Wang, T.; Han, J.; Wang, G.-C.; Zhang, Y.-L.; Pan, W.-D. Synergistic Antibacterial and Antibiotic Effects of Bisbenzylisoquinoline Alkaloids on Clinical Isolates of Methicillin-Resistant Staphylococcus Aureus (MRSA). Molecules 2011, 16, 9819-9826. https://doi.org/10.3390/molecules16129819
Zuo G-Y, Li Y, Wang T, Han J, Wang G-C, Zhang Y-L, Pan W-D. Synergistic Antibacterial and Antibiotic Effects of Bisbenzylisoquinoline Alkaloids on Clinical Isolates of Methicillin-Resistant Staphylococcus Aureus (MRSA). Molecules. 2011; 16(12):9819-9826. https://doi.org/10.3390/molecules16129819
Chicago/Turabian StyleZuo, Guo-Ying, Yang Li, Tao Wang, Jun Han, Gen-Chun Wang, Yun-Ling Zhang, and Wei-Dong Pan. 2011. "Synergistic Antibacterial and Antibiotic Effects of Bisbenzylisoquinoline Alkaloids on Clinical Isolates of Methicillin-Resistant Staphylococcus Aureus (MRSA)" Molecules 16, no. 12: 9819-9826. https://doi.org/10.3390/molecules16129819
APA StyleZuo, G.-Y., Li, Y., Wang, T., Han, J., Wang, G.-C., Zhang, Y.-L., & Pan, W.-D. (2011). Synergistic Antibacterial and Antibiotic Effects of Bisbenzylisoquinoline Alkaloids on Clinical Isolates of Methicillin-Resistant Staphylococcus Aureus (MRSA). Molecules, 16(12), 9819-9826. https://doi.org/10.3390/molecules16129819