Next Article in Journal
Antifungal Effect of (+)-Pinoresinol Isolated from Sambucus williamsii
Next Article in Special Issue
Recent Advances in the Synthesis of Ammonium-Based Rotaxanes
Previous Article in Journal
Thionation of Some α,β-Unsaturated Steroidal Ketones
Previous Article in Special Issue
Synthesis and Structure of D3h-Symmetric Triptycene Trimaleimide
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Supramolecular Coordination Assemblies Constructed From Multifunctional Azole-Containing Carboxylic Acids

Department of Chemistry, Capital Normal University, No. 105, Xisanhuan Beilu, Haidian District, Beijing, 100048, China
*
Author to whom correspondence should be addressed.
Molecules 2010, 15(5), 3478-3506; https://doi.org/10.3390/molecules15053478
Submission received: 9 February 2010 / Revised: 27 April 2010 / Accepted: 5 May 2010 / Published: 12 May 2010
(This article belongs to the Special Issue Supramolecular Assembly)

Abstract

:
This paper provides a brief review of recent progress in the field of metal coordination polymers assembled from azole-containing carboxylic acids and gives a diagrammatic summary of the diversity of topological structures in the resulting infinite metal-organic coordination networks (MOCNs). Azole-containing carboxylic acids are a favorable kind of multifunctional ligand to construct various metal complexes with isolated complexes and one, two and three dimensional structures, whose isolated complexes are not the focus of this review. An insight into the topology patterns of the infinite coordination polymers is provided. Analyzed topologies are compared with documented topologies and catalogued by the nature of nodes and connectivity pattern. New topologies which are not available from current topology databases are described and demonstrated graphically.

Graphical Abstract

1. Introduction

The assembly, structure and potential applications of metal-organic coordination polymers, especially the Metal-Organic Frameworks (MOFs), as functional materials have attracted extensive attention from researchers worldwide because of their intriguing complicated compositions, versatile framework topologies and interesting properties in gas sorption, optics, magnetism and as supporting carriers, etc. [1,2,3,4,5,6,7]. At present, the rational synthetic strategy in this field usually involves the use of multifunctional ligands with multiple active coordination sites to prepare the target compound [8,9,10,11,12]. Polydentate ligands can act as either bridging or chelating ligands to link metal ions together, resulting in the desired networks in the final metal organic coordination polymers [13,14,15,16].
According to a statistical analysis of the literature over the past decade, multifunctional carboxylate ligands with nitrogen-bearing heterocycles have been used expansively in the synthetic strategies to develop multidimensional (one, two and three dimensional) framework structures. For example, pyridinecarboxylic acid and its analogues with active oxygen and nitrogen sites on the both ends have been successfully applied to synthesize coordination polymers [17,18,19,20,21,22,23,24,25,26,27,28]. Compared to the above rigid ligands, the relatively flexible and peculiar carboxylic acids derived from the diazole, triazole and tetrazole moieties have come to be regarded as all-purpose ligands in recent years that can potentially coordinate metal ions in various ways, due to their complicated coordination modes and different performance of the N and O ends. The resulting product generally has various structures with distinct topology. A longer and flexible spacer between the N and O end may even result in more complicated topological forms with multiple interpenetrations. These interpenetrating networks of coordination polymers are also an interesting focus of attention currently [29]. For example, the multifunctional ligand terazole-1-acetic acid (Htza) has been used successfully in the synthesis of a series of coordination polymers [30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51] for its variety of coordination styles on the tetrazole and carboxylate group ends. Recently, we and Yu et al. independently and simultaneously synthesized a series of CuII compounds assembled with Htza and published the analysis of their magnetic properties [51,40].
In this paper, our discussion will focus on the topological structure of the MOCNs constructed by the multifunctional carboxylate ligands containing five-membered N-heterocyclic rings (azoles). The azoles in question include 1,2-diazoles (pyrazole), 1,3-diazoles (imidazole), 1,2,3,-triazoles, 1,2,4-triazoles and tetrazoles. Over the about past decade, a significant number of metal complexes formed by the title ligands with one-, two-, or three-dimensional framework structures have been reported. Quite many among these are zero-dimensional finite structures, which are not our interest in this work. Most of the zero-dimensional compounds are binuclear. The highest-nuclearity of the reported oligomeric complexes up to now is octanuclear, with cubic structure [52,53,54,55]. A summary and discussion for the variety of the topology patterns of the MOCNs assembled by the azole-containing carboxylic acid is contributed to this paper.
Scheme 1. The types of azole considered.
Scheme 1. The types of azole considered.
Molecules 15 03478 sch001

2. Methodology

Structural data was retrieved from Cambridge Structure Database [56,57,58] (CSD) up to May 2009. Only azole-containing carboxylic acid ligands in which both nitrogen atoms in the azole ring and oxygen atom in the carboxylic acid group are coordinated to metal atoms are selected to perform further topological analysis. Nearly three hundred corresponding structures that were published ranging from 1967 to 2009 are listed, in which 81(28%) are zero-dimensional complexes, 71(24%) are one-dimensional structures, 61(21%) are two-dimensional layers and 77(27%) are three-dimensional nets.
In general, MOCNs are constituted by two main parts: the organic linkers and the metal ions. Both metal atoms and ligands are considered as nodes. Coordination bonds are considered as links between nodes. Analysis of topology is performed by using the compiled topology and tiling analytical software TOPOS [59]. As the first step, determination of bonding interactions is calculated by the AutoCN subprogram using the Sectors algorithm in which an improved method of intersecting spheres designed by Peresypkina and Blatov [60] for organic and metal-organic compounds is used. In this method, which is call method of spherical sectors, a sphere of Rsd radius is replaced with a set of spherical sectors corresponding to interatomic contacts. The radius (rsec) of the ith sector is determined by the formula r sec = ( 3 v i Ω i ) 1 3 , where Vi and Ωi are volume and solid angle of a pyramid with basal Voronoi-Dirichlet polyhedron (VDP) face corresponding to interatomic contacts and with the VDP atom in the vertex.
Then both metal atoms and ligands are considered as nodes and the position of nodes that representing clusters or ligands are positioned at the centroids of the group. Coordination bonds are considered as links between nodes. All 0-connected (isolated), 1-connected (dangling) and 2-connected (bridging) nodes are removed to simplify the topology to a maximum extent.
Determination of topology and taxonomy of the simplified nets are analyzed by a subprogram named ADS and searched in the TTD (TOPOS Topological Database) collections for same topological descriptors. The topology of the three-dimensional nets are described by Point Symbol [61], also known as Schläfli Symbol [62], which lists the numbers and sizes of circuits (closed chains of connected atoms) starting from any non-equivalent atom in the net. Instead of Point Symbol, Vertex Symbol, which enumerates the size of faces around each kind of vertex in cyclic order, is adopted customarily to represent topology of two-dimensional sheets. A few exceptions of nonplanar two-dimensional structures, which are two-dimensional but can’t be realized in a plane without intersection of edges, are described by Point Symbol. Known topologies are characterized by RCSR [63] lower-case three-letter symbols, see http://rcsr.anu.edu.au/ for details.

3. One-Dimensional Coordination Chains

3.1. Chain

Single chain is the most preferred one-dimensional structure which can be catalogued into several groups (see Chain in Figure 1): with the title molecules bridging a zigzag chain of metal atoms, one bulky ligand or several small solvent ligands seal the opening of metal atoms. One title ligand links three metal atoms and one metal atom links three ligands, step by step a one-dimensional chain is formed.
The CSD Refcodes presenting in each type of topology are listed below:
CICZUJ[64]OGALEO[71]FEGGAA[78]MEFZUS[87]VIKCOI[97]CEYLOI[104]
PIFBAI[65]OGALIS[71]FOHFUE[79]MENGAO[88]VIQYEA[98]ECULUK[105]
PODZOY[66]OKEHIV[72]GOYSES[80]NENDAL[89]VIQYIE[98]OKEHIV01[67]
AVUPUC[67]OKEHOB[72]GOYSIW[80]NIQGUQ[90]WUPHEU[99]RAJNOG[106]
AVUQOX[67]VOBKUT[73]HIHJIS[81]PAJJOA[91]XIBPAA[100]KOBGUE[40]
DOGMAO[68]BIPJEQ[74]IDIXOJ[82]PAJJOA01[92]XIKWAQ[101]
DOGMES[68]DATMUH[75]IYASEG[83]PEXSIV[93]YIFQUZ[102]
HUXTUP[69]DATNAO[75]LAJZIG[84]PEXSIV01[94]TIWRUN[103]
NIQWUG[70]DOGZAB[76]LAQPAV[85]QANDUF[95]KEXWIU[37]
OGAKUD[71]EDURUR[77]LASSEE[86]SENJEB[96]PEXVEU[37]

3.2. Chain and monomer

As a rare case, CEYLEY is an interesting structure of mononuclear complexes of two title ligands and a copper atom are linked by six coordinated tin atoms into a single chain coordinated topology while between chains separated mononuclear complexes bind them into a two-dimensional sql layer by hydrogen bonds (see Chain and Monomer in Figure 1). π-π stacking of diazole rings exists in the piling of layers.
CEYLEY[104]

3.3. Chains of cubes and rings

Octanuclear oligomer of cobalt atoms and titled ligands are linked by nickel atoms with tetradentate ring-style ligands into an infinite chain structure that forms a very interesting heterometallic structure (see Chains of cubes and rings in Figure 1).
WIBNOL[107]

3.4. Ladder

In the ladder structure (see Ladder in Figure 1), metal atoms are 3-connected nodes, where the title ligands are vertical linkers, and small molecules (such as water, oxalic acid) of metal-metal bonds are horizontal linkers. In the DILGIP, POHSUB and VODCEX structures, metal atoms and title ligands serve as two counterpart 3-connected nodes. The vertical linker of PEFVIF is a Second Building Unit (SBU) constituted by a dinuclear complex.
ABAYEI[108]XENCEZ[109]DILGIP[111]KEPYIO[113]ROMRUH[115]LIWLUZ[36]
AVUQAJ[67]XOKRIZ[110]HOSTEO[112]POHSUB[114]PEFVIF[116]VODCEX[43]

3.5. Pipe

Four single chains are linked into one bamboo-like pipe (see Pipe in Figure 1) with the title ligandd as chain linkers and joints of the hollows.
YIFSIP[102]
All these topologies are shown in Figure 1.

4. Two-Dimensional Coordination Layers

4.1. sql

The uninodal topology sql is a most common one, whose shape is a square grid sheet and has a vertex symbol of {44}(see sql in Figure 2). Most of the structures of sql topology represent 4-connected metal atoms as vertexes and 2-connected ligands as edges. Both metal atoms and ligands serve as 4-connects nodes in OFITAZ and PEZROC. The structures LIQVEN, YASSEQ, ODIVIH and ODIVON show interweaved sql topology.
TIGCAO[117]JEXSIP[120]LIQVEN[122]SONJUA[126]POLDIE[129]MISHAY[50]
EVONOS[118]KEPYOU[121]LIWKIM[123]YASSEQ[127]KOBGOY[40]PEZROC[38]
HOGDEN[114]KEPYOU01[68]OFITAZ[124]ODIVIH[128]KOBGOY01[42]XOHPAM[48]
JEDYEX[119]LAQNUN[85]OFITAZ01[125]ODIVON[128]LIWLOT[36]XOHPEQ[48]

4.2. hcb

hcb is also a very common uninodal planar topology with a vertex symbol of {63} and a honeycomb-like shape (see hcb in Figure 2). BOKXUV, FIBJEG, KEKWIH, TIVZII, TIWBAD, VIQZAX, WOFVET and EHAGAW have metal atoms as all 3-connected nodes and ligands as linkers. FENSUN use both metal atoms and the title ligands as 3-connected nodes. NETXIU and NOFGAR use the title ligands as 3-connected nodes and metal atoms with terminal water as linkers.
BOKXUV[130]FIBJEG[133]TIVZOO[132]WOFVET[94]NOFGAR[136]
FENSUN[131]KEKWIH[134]TIVZUU[132]VIQZAX[98]NOFGEV[136]
FENSUN03[132]TIVZII[132]TIWBAD[132]NETXIU[135]EHAGAW[137]

4.3. fes

fes is a {4.82} topology planar structure with one type of 3-connected nodes. All fes structure is formed by both the title ligands and metal atoms serve as 3-connected nodes and one or two terminal waters on the metal by the side of a two-dimensional sheet (see fes in Figure 2).
FENSUN01[138]OFIVIJ[125]TIWBEH[132]YELYIY01[140]
FENSUN02[92]QEXPAL[139]YELYIY[92]LIMNOL[35]

4.4. kgd

Topology kgd has a vertex symbol of {43}2{46}, with two type of nodes, 3-connected and 6-connected nodes. All structures with kgd topology in this research have the same ligands and configuration in which the ligand serves as a 3-connected node and metal atoms as a 6-connected node (see kgd in Figure 3).
JEXSAH[120]JEXSEL[120]SEYVEY[141]

4.5. gek1

gek1 is a binodal two-dimensional topology in personal.ttd database in the TTD collection with the vertex symbol of {3.4.6}{3.4.6.3.6} (see gekl in Figure 3). TIKWUG is basically a title ligand bridged metal-acetic acid chain which is constructed of 5-connected cadmium atoms and 3-connected titled ligands and 2-connected acetic acids.
TIKWUG[142]

4.6. New two-dimensional topologies

Six new topologies which are not present in the TTD collection are listed below (Shown in Table 1).

5. Three-Dimensional Coordination Frameworks

5.1. dia

dia is a most common 3-D uninodal topology with the point symbol of {66} (see dia in Figure 4). It contains one kind of 4-c node. All target structures with dia topology have an interpenetration style, which is caused by the large porous structure of a single dia framework. Rather than the three penetrated framework in AGOMOZ and SEYVIC, the four penetrated framework in LUMDEC, METYIU and NEHZIK, is preferred, which may stem from the presence of a slimmer ligand. In all the six dia structures (Figure 4), metal atoms are the 4-connected nodes and 2-connected ligands serve as edges.
AGOMOZ[149]SEYVIC[150]LUMDEC[150]LUMDIG[150]METYIU[151]NEHZIK[152]

5.2. sra

sra is a uninodal 4-connected topology with the point symbol of {42.63.8} (see sra in Figure 4). Four out of five of the sra structures consist of tetrazole-containing ligands. In all the result, both metal atoms and ligands serve as 4-connected nodes and few has coordinative water on metal atoms.
RAPBEP[153]GAMFEG[154]INOXUE[30]INOYAL[30]KOCWAB[41]QEYXAU[155]

5.3. etb

etb is a uninodal topology with one kind of 3-connected node and its point symbol is {83} and vertex symbol is [8.8.8(2)] (see etb in Figure 4). Both of the cadmium atoms and titled ligands in VERQOZ are 3-connected vertexes with terminal pyridines on the metal atoms.
VERQOZ[156]

5.4. etc

etc is also a uninodal topology with one kind of 3-connected node and its point symbol is {83} and vertex symbol is [8.8.8(2)] (see etc in Figure 4), which are same the etb, but they represent different topologies. Both of the manganese atoms and title ligands in WOMFIO are 3-connected vertexes leading to three-dimensional porous structure in which small solvent molecules are contained.
WOMFIO[157]

5.5. pcu

pcu (primitive cubic), another common topology, is a 6-connected uninodal net with the point symbol of {412.63} (see pcu in Figure 4). Oddly pcu is rare, with only one instance ODIVUT in which cobalt atoms serve as all 6-connected nodes while bridging title ligands and water serve as edges.
ODIVUT[128]

5.6. ths

Topology ths has the point symbol of {103} which is a uninodal net containing only 3-connected nodes (see ths in Figure 4). Both the ligands and metal atoms serve as the 3-connected nodes.
JODGEP[158]KAVGEU[159]

5.7. rtl

Topology rtl has the point symbol of {4.62}2{42.610.83}. It contains 3-connected nodes and 6-connected nodes (see rtl in Figure 5). All rtl structures also use tetrazole-containing ligands as 3-connected nodes exclusively, and metal atoms as 6-connected nodes.
JOJHUM[45]JOJJAU[45]JOJJIC[45]

5.8. pts

Topology pts has the point symbol of {42.84} and vertex symbol of [4.4.8(7).8(7).8(7).8(7)] [4.4.8(2).8(2).8(8).8(8)] (see pts in Figure 5). The vertex symbol shows that there are two different 4-connected nodes in the framework. All pts structures have tetrazole-containing ligands since they have enough coordination atoms to form the 4-connected nodes. Metal atoms form the other kind of 4-connected nodes.
LARBOW[32]REHRAY[33]LARBOW01[35]

5.9. ant

Topology ant contains 3-connected nodes and 6-connected nodes and has the point symbol of {42.6}2{44.62.88.10} (see ant in Figure 5). JOJJEY is the only entry that has the ant topology. Zinc atoms are its 6-connected nodes while title ligands are the 3-connected nodes.
JOJJEY[45]

5.10. bbf

There are two different kinds of 4-connected vertexes in topology bbf whose point symbol is {64.82}{66}2 (see bbf in Figure 5). UHUNEQ, in which copper atoms and titled ligands represent different 4-connected nodes, is the only entry that possesses bbf topology.
UHUNEQ[160]

5.11. dmc

3-connected nodes and 4-connected nodes are presents in dmc topology whose point symbol is {4.82}{4.85} (see dmc in Figure 5). The only instance of dmc in this research is XOHPOA, whose 4-connected nodes are cadmium atoms and 3-connected nodes are title ligands. 2-connected pillars are also contained in the structure.
XOHPOA[161]

5.12. pyr

pyr is a 3,6-connected binodal net with point symbol of {612.83}{63}2 (see pyr in Figure 5). QEYWUN is the only structure here that has a pyr topology. Cadmium atoms serve as 6-connected node and title ligands as 3-connected nodes.
QEYWUN[155]

5.13. sqc5577

sqc5577 is a 4,4-connected binodal net in epinet.ttd database in TTD collection with the point symbol of {42.62.82}{42.63.8} (see sqc5577 in Figure 5). Both cadmium atoms and title ligands serve as 4-connected nodes of a different type.
TONLOY[162]

5.14. stp

stp is a 4,6-connected binodal net with a point symbol of {44.62}3{49.66}2 (see stp in Figure 5). Both title ligands and carbonate ions in AGARUW are 4-connected nodes and the lanthanum atoms are 6-connected nodes. It is a porous structure.
AGARUW[163]

5.15. tfz

tfz is a 3,4-connected binodal net. Its point symbol is {63}2{64.8.10}3 (see tfz in Figure 5). Like KAVGAQ, tfz is formed by connection of edge center of neighboring hcb layers, but has a higher symmetry.
In REJLOI, title ligands are the 3-connected nodes and cobalt atoms are the 4-connected nodes.
REJLOI[164]

5.16. KAVGAQ

KAVGAQ is a unique topology only present in coordination polymers with an imidazole-4,5-dicarboxylic acid ligand. It can be recognized by the central points of edges of hcb layers connected by pillars (see KAVGAQ in Figure 6). Its point symbol is {63}2{64.102}{64.82}2. One kind of 3-connected node and three kinds of 4-connected node are present. In all instances, title ligands serve as 3-connected nodes and metal atoms as 4-connected nodes.
KAVGAQ[159]REJLEY[164]REJLIC[164]XECBUD[165]

5.17. RAPBIT

RAPBIT is a unique 5, 6, 6-connected 3-nodal net whose point symbol is {3.43.56.65}2{3.46.53}2{32.42.52.64.74.8} (see RAPBIT in Figure 6). Cadmium atoms are separated into two classes of 6-connected nodes while title ligands are the 5-connected nodes.
RAPBIT[153]

5.18. New three-dimensional topologies

Twenty four new topologies which are not present in the TTD collection are listed below (Shown in Table 2).

6. Summary and Conclusions

This review shows that a number of coordination sites provided by the azole-containing carboxylic acid ligand are readily available to bind to metal ions as polydentate O and N donors and these multifunctional ligands can provide a variety of the topology patterns in the resulting infinite metal-organic coordination networks (MOCNs). The diverse coordination modes of diazole, triazole and tetrazole-containing carboxylic acids and the various topology patterns in the one, two, and three-dimensional metal-organic coordination polymers enrich the fields of research in the coordination and structural chemistry of these compounds, and contribute plentiful novel MOFs materials with better practical value as supporting carriers, in gas sorption and magnetic, optic or electronic applications.

Acknowledgments

Financial assistance received from the National Natural Science Foundation of China (grant no. 20971091) is gratefully acknowledged. Sincere thanks are also due to the State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, for the help in providing the CSD data and discussing on the topology analysis.

References

  1. Caulder, D.L.; Raymond, K.N. Supermolecules by design. Acc. Chem. Res. 1999, 32, 975–982. [Google Scholar] [CrossRef]
  2. Seidel, S.R.; Stang, P.J. High-symmetry coordination cages via self-assembly. Acc. Chem. Res. 2002, 35, 972–983. [Google Scholar] [CrossRef] [PubMed]
  3. Yaghi, O.M.; O’Keeffe, M.; Ockwig, N.W.; Chae, H.K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature 2003, 423, 705–714. [Google Scholar] [CrossRef] [PubMed]
  4. Kesanli, B.; Lin, W.B. Chiral porous coordination networks: Rational design and applications in enantioselective processes. Coord. Chem. Rev. 2003, 246, 305–326. [Google Scholar] [CrossRef]
  5. Frey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F. Crystallized frameworks with giant pores: Are there limits to the possible? Acc. Chem. Res. 2005, 38, 217–225. [Google Scholar] [CrossRef] [PubMed]
  6. Bradshaw, D.; Claridge, J.B.; Cussen, E.J.; Prior, T.J.; Rosseinsky, M.J. Design, chirality, and flexibility in nanoporous molecule-based materials. Acc. Chem. Res. 2005, 38, 273–282. [Google Scholar] [CrossRef] [PubMed]
  7. Fujita, M.; Tominaga, M.; Hori, A.; Therrien, B. Coordination assemblies from a Pd(II)-cornered square complex. Acc. Chem. Res. 2005, 38, 369–378. [Google Scholar] [CrossRef] [PubMed]
  8. Robin, A.Y.; Fromm, K.M. Coordination polymer networks with O- and N-donors: what they are, why and how they are made. Coord. Chem. Rev. 2006, 250, 2127–2157. [Google Scholar] [CrossRef]
  9. Wei, Y.Q.; Yu, Y.F.; Wu, K.C. Highly stable diamondoid network coordination polymer [Mn(NCP)2]n with notable NLO, magnetic, and luminescence properties. Cryst. Growth Des. 2007, 7, 2262–2264. [Google Scholar] [CrossRef]
  10. Su, C.Y.; Smith, M.D.; Goforth, A.M.; Zur Loye, H. A Three-dimensional, noninterpenetrating metal-organic framework with the moganite topology: A simple (42.62.82)(4.64.8)2 net containing two kinds of topologically nonequivalent points. Inorg. Chem. 2004, 43, 6881–6883. [Google Scholar] [CrossRef] [PubMed]
  11. Kitagawa, S.; Masaoka, S. Metal complexes of hexaazatriphenylene (hat) and its derivatives - from oligonuclear complexes to coordination polymers. Coord. Chem. Rev. 2003, 246, 73–88. [Google Scholar] [CrossRef]
  12. Bu, X.H.; Tong, M.L.; Chang, H.C.; Kitagawa, S.; Batten, S.R. A neutral 3D copper coordination polymer showing 1D open channels and the first interpenetrating NbO-type network. Angew. Chem. Int. Ed. 2004, 43, 192–195. [Google Scholar] [CrossRef] [PubMed]
  13. Yong, G.P.; Wang, Z.Y.; Cui, Y. Synthesis, structural characterization and properties of copper(Ⅱ) and zinc(Ⅱ) coordination polymers with a new bridging chelating ligand. Eur. J. Inorg. Chem. 2004, 4317–4323. [Google Scholar] [CrossRef]
  14. Chang, F.; Wang, Z.M.; Sun, H.L.; Wen, G.H.; Zhang, X.X. [Cu2(bpdado)2(H2O)2]·H2O}n: A 1D nanotubular coordination polymer with wall made of edge-sharing hexagons, where bpdado=2,2′-bipyridine-3,3′-dicarboxylate-1,1′-dioxide. Dalton Trans. 2005, 2976–2978. [Google Scholar] [CrossRef] [PubMed]
  15. Zaworotko, M.J. From disymmetric molecules to chiral polymers: a new twist for supramolecular synthesis? Angew. Chem., Int. Ed. 1998, 37, 1211–1213. [Google Scholar] [CrossRef]
  16. Cao, R.; Sun, D.F.; Liang, Y.C.; Hong, M.C.; Tatsumi, K.; Shi, Q. Syntheses and characterizations of three-dimensional channel-like polymeric lanthanide complexes constructed by 1,2,4,5-benzenetetracarboxylic acid. Inorg. Chem. 2002, 41, 2087–2094. [Google Scholar] [CrossRef] [PubMed]
  17. Liang, Y.C.; Cao, R.; Su, W.P.; Hong, M.C.; Zhang, W.J. Syntheses, structures, and magnetic properties of two gadolinium(III)-copper(II) coordination polymers by a hydrothermal reaction. Angew. Chem., Int. Ed. 2000, 39, 3304–3307. [Google Scholar] [CrossRef]
  18. Chapman, M.E.; Ayyappan, P.; Foxman, B.M.; Yee, G.T.; Lin, W.B. Synthesis, x-ray structures, and magnetic properties of copper(II) pyridinecarboxylate coordination networks. Cryst. Growth Des. 2001, 1, 159–163. [Google Scholar] [CrossRef]
  19. Lu, J.Y.; Schauss, V. Crystal engineering of a three-dimensional coordination polymer based on both covalent and O–H···O hydrogen bonding interactions of bifunctional ligands. CrystEngComm. 2001, 26, 111–113. [Google Scholar] [CrossRef]
  20. Noro, S.; Kitagawa, S.; Yamashita, M.; Wada, T. New microporous coordination polymer affording guest-coordination sites at channel walls. Chem. Commun. 2002, 222–223. [Google Scholar] [CrossRef]
  21. Lu, J.Y.; Babb, A.M. An unprecedented interpenetrating structure with two covalent-bonded open-framework of different dimensionality. Chem. Commun. 2001, 821–822. [Google Scholar] [CrossRef]
  22. Tong, M.L.; Li, L.J.; Mochizuki, K.; Chang, H.C.; Chen, X.M.; Li, Y.; Kitagawa, S. A novel three-dimensional coordination polymer constructed with mixed-valence dimeric copper(I,II) units. Chem. Commun. 2003, 428–429. [Google Scholar] [CrossRef]
  23. Kang, Y.; Yao, Y.G.; Qin, Y.Y.; Zhang, J.; Chen, Y.B.; Li, Z.J.; Wen, Y.H.; Cheng, J.K.; Hu, R.F. A novel ligand-unsupported 3D framework polymer of trimeric copper(I) and its NLO property. Chem. Commun. 2004, 1046–1047. [Google Scholar] [CrossRef] [PubMed]
  24. Eubank, J.F.; Walsh, R.D.; Eddaoudi, M. Terminal co-ligand directed synthesis of a neutral, non-interpenetrated (10,3)-a metal–organic framework. Chem. Commun. 2005, 2095–2097. [Google Scholar] [CrossRef] [PubMed]
  25. Lou, B.Y.; Jiang, F.L.; Wu, B.L.; Yuan, D.Q.; Hong, M.C. From helical array to porous architecture: exploring the use of side chains of amino acids to engineer 1D infinite coordination polymeric chain into porous frameworks. Cryst. Growth Des. 2006, 6, 989–993. [Google Scholar] [CrossRef]
  26. Zeng, Y.F.; Liu, F.C.; Zhao, J.P.; Cai, S.; Bu, X.H.; Ribas, J. An azido–metal–isonicotinate complex showing long-range ordered ferromagnetic interaction: synthesis, structure and magnetic properties. Chem. Commun. 2006, 21, 2227. [Google Scholar] [CrossRef] [PubMed]
  27. Liu, F.C.; Zeng, Y.F.; Zhao, J.P.; Hu, B.W.; Hu, X.; Ribas, J.; Bu, X.H. Novel lanthanide–azido complexes: Hydrothermal syntheses, structures and magnetic properties. Dalton Trans. 2009, 12, 2074. [Google Scholar] [CrossRef] [PubMed]
  28. Hu, X.; Zeng, Y.F.; Chen, Z.; Saudo, E.C.; Liu, F.C.; Ribas, J.; Bu, X.H. 3d−4f coordination polymers containing alternating EE/EO azido chain synthesized by synergistic coordination of lanthanide and transition metal ions. Cryst. Growth Des. 2009, 9, 421–426. [Google Scholar] [CrossRef]
  29. Batten, S.R.; Robson, R. Interpenetrating nets: ordered, periodic entanglement. Angew. Chem. Int. Ed. 1998, 37, 1460–1494. [Google Scholar] [CrossRef]
  30. Qu, Z.R.; Zhao, H.; Wang, X.S.; Li, Y.H.; Song, Y.M.; Liu, Y.J; Ye, Q.; Xiong, R.G.; Abrahams, B.F.; Xue, Z.L.; You, X.Z. Homochiral Zn and Cd coordination polymers containing amino acid−tetrazole ligands. Inorg. Chem. 2003, 42, 7710–7712. [Google Scholar] [CrossRef] [PubMed]
  31. He, F.; Tong, M.L.; Yu, X.L.; Chen, X.M. Controlled aggregation of heterometallic nanoscale Cu12Ln6 clusters (Ln = GdIII or NdIII) into 2D coordination polymers. Inorg. Chem. 2005, 44, 559–565. [Google Scholar] [CrossRef] [PubMed]
  32. Wang, X.S.; Huang, X.F.; Xiong, R.G. An unexpected intermediate or precipitate-novel 3D Cd-coordination polymer formed in the preparation of 5-substituted 1H-tetrazoles from nitrile in water. Chin. J. Inorg. Chem. 2005, 21, 1020–1024. [Google Scholar]
  33. Ye, Q.; Song, Y.M.; Wang, G.X.; Chen, K.; Fu, D.W.; Chan, W.H.; Zhu, J.S.; Huang, S.P.; Xiong, R.G. Ferroelectric metal-organic framework with a high dielectric constant. J. Am. Chem. Soc. 2006, 128, 6554–6555. [Google Scholar] [CrossRef] [PubMed]
  34. Rodriguez-Dieguez, A.; Colacio, E. [Znn(polyox)(pmtz)n]: The first polyoxalate-containing coordination polymer from an unforeseen chemical rearrangement of 5-pyrimidyltetrazole under hydrothermal conditions. Chem. Commun. 2006, 4140–4142. [Google Scholar] [CrossRef] [PubMed]
  35. Jiang, T.; Zhao, Y.F.; Zhang, X.M. Blue-green photoluminescent 5-and 10-connected metal 5-(4′-carboxy-phenyl)tetrazolate coordination polymers. Inorg. Chem. Commun. 2007, 10, 1194–1197. [Google Scholar] [CrossRef]
  36. Yang, G.W.; Li, Q.Y.; Wang, J.; Yuan, R.X.; Xie, J.M. New CuII and CdII coordination polymers employing 5-[N-acetato(4-pyridyl)] tetrazolate as a bridging ligand. Chin. J. Inorg. Chem. 2007, 23, 1887–1894. [Google Scholar]
  37. Fu, D.W.; Zhao, H. Intermediate captured in the reaction of synthesizing valartan analogue (I). Chin. J. Inorg. Chem. 2007, 23, 122–123. [Google Scholar]
  38. Huang, X.H.; Sheng, T.L.; Xiang, S.C.; Fu, R.B.; Hu, S.M.; Li, Y.M.; Wu, X.T. Synthesis, structure and luminescence of a novel 2D cadmium coordination polymer with a ligand generated in situ. Chin. J. Struct. Chem. 2007, 26, 333–337. [Google Scholar]
  39. Bai, Y.L.; Tao, J.; Huang, R.B.; Zheng, L.S.; Zheng, S.L.; Oshida, K.; Einaga, Y. Pressure effects and mössbauer spectroscopic studies on a 3D mixed-valence iron spin-crossover complex with NiAs topology. Chem. Commun. 2008, 1753–1755. [Google Scholar] [CrossRef] [PubMed]
  40. Yu, Q.; Zhang, X.Q.; Bian, H.D.; Liang, H.; Zhao, B.; Yan, S.P.; Liao, D.Z. pH-Dependent Cu(II) coordination polymers with tetrazole-1-acetic acid: synthesis, crystal structures, EPR and magnetic properties. Cryst. Growth Des. 2008, 8, 1140–1146. [Google Scholar] [CrossRef]
  41. Yu, Z.P.; Xie, Y.; Wang, S.J.; Yong, G.P.; Wang, Z.Y. Synthesis, crystal structures and optical properties of two coordination polymers from 4-(1H-tetrazol-5-yl) benzoic acid. Inorg. Chem. Commun. 2008, 11, 372–376. [Google Scholar] [CrossRef]
  42. Dong, W.W.; Zhao, J.; Xu, L. Syntheses, crystal structure and properties of two novel coordination polymers with the flexible tetrazole-1-acetic acid (Htza). J. Solid State Chem. 2008, 181, 1149–1154. [Google Scholar] [CrossRef]
  43. Yang, G.W.; Li, Q.Y.; Zhou, Y.; Sha, P.; Ma, Y.S.; Yuan, R.X. Mn and Cu-Na coordination compounds containing the tetrazole-5-acetato anion (tza) ligands. Inorg. Chem. Commun. 2008, 11, 723–726. [Google Scholar] [CrossRef]
  44. Jia, Q.X.; Wang, Y.Q.; Yue, Q.; Wang, Q.L.; Gao, E.Q. Isomorphous Co-II and Mn-II materials of tetrazolate-5-carboxylate with an unprecedented self-penetrating net and distinct magnetic behaviours. Chem. Commun. 2008, 4894–4896. [Google Scholar] [CrossRef] [PubMed]
  45. Dong, W.W.; Zhao, J.; Xu, L. Remarkable structural transformation of [Zn(tza)(2)] during recrystallization, syntheses and crystal structures of [M(tza)(2)] (M = Zn, Cd, Mn, Co; Htza = tetrazole-1-acetic acid. Cryst. Growth Des. 2008, 8, 2882–2886. [Google Scholar] [CrossRef]
  46. Zhang, J.Y.; Wang, Y.Q.; Peng, H.Q.; Cheng, A.L.; Gao, E.Q. Synthesis, structure, and photoluminescence of a zinc(II) coordination polymer with 4-(tetrazol-5-yl)benzoate. Struct. Chem. 2008, 19, 535–539. [Google Scholar] [CrossRef]
  47. Li, Y.; Xu, G.; Zou, W.Q.; Wang, M.S.; Zheng, F.K.; Wu, M.F.; Zeng, H.Y.; Guo, G.C.; Huang, J.S. A novel metal-organic network with high thermal stability: Nonlinear optical and photoluminescent properties. Inorg. Chem. 2008, 47, 7945–7947. [Google Scholar] [CrossRef] [PubMed]
  48. Yang, G.W.; Li, Q.Y.; Zhou, Y.; Gu, G.Q.; Ma, Y.S.; Yuan, R.X. Two copper(II) coordination polymers containing atza ligand [atza = 5-aminotetrazole-1-acetato]. Inorg. Chem. Commun. 2008, 11, 1239–1242. [Google Scholar] [CrossRef]
  49. Nouar, F.; Eubank, J.F.; Bousquet, T.; Wojtas, L.; Zaworotko, M.J.; Eddaoudi, M. Supermolecular building blocks (SBBs) for the design and synthesis of highly porous metal-organic frameworks. J. Am. Chem. Soc. 2008, 130, 1833–1835. [Google Scholar] [CrossRef] [PubMed]
  50. Li, Q.Y.; Yang, G.W.; Yuan, R.X; Wang, J.P.; Cui, P.F. Bis(5-aminotetrazole-1-acetato-κO)tetraaquacobalt(II) and catena-Poly[[cadmium(II)]-bis(μ-5-aminotetrazole-1-acetato-κ3N4:O,O′)]. Acta Crystallogr. 2008, C64, m26–m29. [Google Scholar]
  51. Keene, T.D.; Deng, Y.H.; Li, F.G.; Ding, Y.F.; Wu, B.; Liu, S.X.; Ambrus, C.; Waldmann, O.; Decurtins, S.; Yang, X.J. Magnetostructural investigations into an S = 1/2 sheet and a tetranuclear butterfly cluster. Inorg. Chim. Acta 2009, 362, 2265–2269. [Google Scholar] [CrossRef]
  52. Aromi, G.; Roubeau, O.; Helliwell, M.; Teat, S.J.; Winpenny, R.E.P. Novel topologies in NiII cluster chemistry: Incorporation of alkaline-earth metals in the new [NiII6MgII2] and [NiII8MII](M = Sr, Ba) cages. Dalton Trans. 2003, 3436–3442. [Google Scholar] [CrossRef]
  53. Liu, Y.L.; Kravtsov, V.; Walsh, R.D.; Poddar, P.; Srikanth, H.; Eddaoudi, M. Directed assembly of metal–organic cubes from deliberately predesigned molecular building blocks. Chem. Commun. 2004, 2806–2807. [Google Scholar] [CrossRef] [PubMed]
  54. Zou, R.Q.; Jiang, L.; Senoh, H.; Takeichi, N.; Xu, Q. Rational assembly of a 3D metal–organic framework for gas adsorption with predesigned cubic building blocks and 1D open channels. Chem. Commun. 2005, 3526–3528. [Google Scholar] [CrossRef] [PubMed]
  55. Xu, Q.; Zou, R.Q.; Zhong, R.Q.; Kachi-Terajima, C.; Takamizawa, S. Cubic metal−organic polyhedrons of Nickel(II) imidazole dicarboxylate depositing protons or alkali metal ions. Cryst. Growth Des. 2008, 8, 2458–2463. [Google Scholar] [CrossRef]
  56. Allen, F. The Cambridge Structure Database: A quarter of a million crystal structures and rising. Acta Crystallogr. 2002, B58, 380–388. [Google Scholar] [CrossRef]
  57. Allen, F.; Motherwell, W.D.S. Applications of the Cambridge Structural Database in organic and crystal chemistry. Acta Crystallogr. 2002, B58, 407–422. [Google Scholar] [CrossRef]
  58. Zorkii, P.M.; Oleinikov, P.N. Crystal-chemical classes of “Cambridge” crystal structures: Statistical analysis of topology. J. Struct. Chem. 2001, 42, 24–31. [Google Scholar] [CrossRef]
  59. Blatov, V.A. Multipurpose crystallochemical analysis with the program package TOPOS. IUCr CompComm Newsletter 2006, 7, 4–38. [Google Scholar]
  60. Peresypkina, E.V.; Blatov, V.A. Topology of molecular packings in organic crystals. Acta Crystallogr 2000, B56, 1035–1045. [Google Scholar]
  61. Wells, A.F. Further studies of three-dimensional nets; Monograph. 8, American Crystallographic Association, Polycrystal Book Service: Pittsburgh, PA, USA, 1979. [Google Scholar]
  62. Smith, J.V. Enumeration of 4-connected 3-dimensional nets and classification of framework silicates, II. Perpendicular and near-perpendicular linkages from 4.82, 3.122 and 4.6.12 nets. Amer. Mineral. 1978, 960–969. [Google Scholar]
  63. O’Keeffe, M.; Peskov, M.A.; Ramsden, S.J.; Yaghi, O.M. The reticular chemistry structure resource (RCSR) database of, and symbols for, crystal nets. Acc. Chem. Res. 2008, 41, 1782–1789. [Google Scholar] [CrossRef] [PubMed]
  64. Colacio, E.; Dominguez-Vera, J.M.; Ghazi, M.; Kivekas, R.; Klinga, M.; Moreno, J.M. Singly anti-anti carboxylate-bridged zig-zag chain complexes from a carboxylate-containing tridentate schiff base ligand and M(hfac)2 [M = MnII, NiII, and CuII]: Synthesis, crystal structure, and magnetic properties. Eur. J. Inorg. Chem. 1999, 441–445. [Google Scholar] [CrossRef]
  65. Liu, Y.Y. catena-Poly[[triaquamanganese(II)]-μ-1,2,4-triazole-3,5-dicarboxylato-κ3O3:N4,O5]. Acta Crystallogr. 2007, E63, m1605. [Google Scholar] [CrossRef]
  66. Sun, Y.Y.; Zhang, Y.W.; Zhang, G.; Cheng, L. catena-Poly[[triaquazinc(II)]-μ-1H-1,2,4-triazole-3,5-dicarboxylato]. Acta Crystallogr. 2008, E64, m1113. [Google Scholar] [CrossRef] [PubMed]
  67. King, P.; Clerac, R.; Anson, C.E.; Powell, A.K. The building block approach to extended solids: 3,5-pyrazoledicarboxylate coordination compounds of increasing dimensionality. Dalton Trans. 2004, 852–861. [Google Scholar] [CrossRef] [PubMed]
  68. Santillan, G.A.; Carrano, C.J. Cobalt, Zinc, and Nickel complexes of a diatopic heteroscorpionate ligand: building blocks for coordination polymers. Inorg. Chem. 2008, 47, 930–939. [Google Scholar] [CrossRef] [PubMed]
  69. Hammes, B.S.; Kieber-Emmons, M.T.; Letizia, J.A.; Shirin, Z.; Carrano, C.J.; Zakharov, L.N.; Rheingold, A.L. Synthesis and characterization of several zinc(II) complexes containing the bulky heteroscorpionate ligand bis(5-tert-butyl-3-methylpyrazol-2-yl)acetate: Relevance to the resting states of the zinc(II) enzymes thermolysin and carboxypeptidase A. Inorg. Chim. Acta 2003, 346, 227–238. [Google Scholar] [CrossRef]
  70. Dou, Q.Q.; He, Y.K.; Zhang, L.T.; Han, Z.B. catena-Poly[4,4′-bipyridinium [bis(μ3-pyrazole-3,5-dicarboxylato-κ5O5,N1:N2,O3:O3)dicopper(II)]]. Acta Crystallogr. 2007, E63, m2908–m2909. [Google Scholar] [CrossRef]
  71. An, C.X.; Lu, Y.C.; Shang, Z.F.; Zhang, Z.H. Syntheses and crystal structures of the metal complexes based on pyrazolecarboxylic acid ligands. Inorg. Chim. Acta 2008, 361, 2721–2730. [Google Scholar] [CrossRef]
  72. Tian, J.L.; Yan, S.P.; Liao, D.Z.; Jiang, Z.H.; Cheng, P. Syntheses, structures and properties of two one-dimensional chain complexes: [Mn(Hpdc)(H2O)2]n and [Cu2(Hpdc)2][4,4-dpdo] (Hpdc=3,5-pyrazoledicarboxylic acid group, dpdo=4,4-dipyridyl-N,N-dioxide hydrate). Inorg. Chem. Commun. 2003, 6, 1025–1029. [Google Scholar] [CrossRef]
  73. Branzea, D.G.; Guerri, A.; Fabelo, O.; Ruiz-Perez, C.; Chamoreau, L.-M.; Sangregorio, C.; Caneschi, A.; Andruh, M. Heterobinuclear complexes as tectons in designing coordination polymers. Cryst. Growth Des. 2008, 8, 941–949. [Google Scholar] [CrossRef]
  74. Gu, C.S.; Gao, S.; Huo, L.H.; Zhao, H.; Zhao, J.G. catena-Poly[[(1,10-phenanthroline-κ2N,N′)copper(II)]-μ-4-carboxyimidazole-5-carboxylato(2-)-κ4N,O:N′,O′]. Acta Crystallogr. 2004, E60, m1852–m1854. [Google Scholar] [CrossRef]
  75. Wang, X.; Qin, C.; Wang, E.; Xu, L. New one-dimensional imidazole-bridged cadmium(II) coordination polymers-syntheses, crystal structures and photoluminescence. J. Mol. Struct. 2005, 749, 45–50. [Google Scholar] [CrossRef]
  76. Mijangos, E.; Costa, J.S.; Roubeau, O.; Teat, S.J.; Gamez, P.; Reedijk, J.; Gasque, L. Self-assembly of an infinite Copper(II) chiral metallohelicate. Cryst. Growth Des. 2008, 8, 3187–3192. [Google Scholar] [CrossRef]
  77. Hao, L.J.; Bao, Z.M.; Yu, T.L. catena-Poly[[(2,2-bipyridine)cobalt(II)]-μ-imidazole-4,5-dicarboxylato]. Acta Crystallogr. 2007, E63, m1871. [Google Scholar] [CrossRef]
  78. Chen, H.M.; Yang, S.P.; Zhang, F.; Yu, X.B. Synthesis, crystal structure and properties of aquacopper(II) N-[(1-Methylimidazole-2-yl) methylene]-β-alaninate hexafluoraphosphate and copper(II)[N-(1-methylimidaz ole-2-yl) methyl-β-alanine superchlorate. Synth. React. Inorg. Met. Org. Chem. 2003, 33, 1787–1800. [Google Scholar] [CrossRef]
  79. Gao, S.; Liu, J.W.; Huo, L.H. catena-Poly[[aquacadmium(II)]bis(μ-4,5-diphenyl-1H-imidazole-1-acetate)- κ3N:O,O′; κ3O,O′:N]. Acta Crystallogr. 2005, E61, m1012. [Google Scholar] [CrossRef]
  80. Long, L.S.; Yang, S.P.; Tong, Y.X.; Mao, Z.W.; Chen, X.M.; Ji, L.N. Synthesis, crystal structures and properties of copper(II) complexes of Schiff base derivatives containing imidazole and β-alanine groups. J. Chem. Soc. Dalton Trans. 1999, 1999–2004. [Google Scholar] [CrossRef]
  81. Landaverry, Y.R.; White, K.N.; Olmstead, M.M.; Einarsdottir, O.; Konopelski, J.P. Cytochrome c oxidase active site mimics: New ligands for copper and an unexpected oxidative c-c bond formation. Heterocycles 2006, 70, 147–152. [Google Scholar]
  82. Deng, Q.J.; Zeng, M.H.; Liang, H.; Ng, S.W.; Huang, K.L. catena-Poly[[[diaquamanganese(II)]bis(μ-1H-benzimidazole-5-carboxylato)-κ2N3:O; κ2O:N3] dihydrate]. Acta Crystallogr. 2006, E62, m1293–m1295. [Google Scholar] [CrossRef]
  83. Wang, L.; Cai, J.W.; Mao, Z.W.; Feng, X.L.; Huang, J.W. Dinickel complexes bridged by unusual (N,O,O′)-coordinated α-amino acids: syntheses, structural characterization and magnetic properties. Transit. Metal Chem. 2004, 29, 411–418. [Google Scholar] [CrossRef]
  84. Gao, S.; Gu, C.S.; Huo, L.H.; Zhao, H.; Zhao, J.G. catena-Poly[[(1,10-phenanthroline-κ2N,N′)cadmium(II)]-μ-imidazole-4,5-dicarboxylato-κ4N,O:N,O′]. Acta Crystallogr. 2004, E60, m1672–m1674. [Google Scholar] [CrossRef]
  85. Liu, Z.; Chen, Y.; Liu, P.; Wang, J.; Huang, M.H. Cadmium(II) and cobalt(II) complexes generated from benzimidazole-5-carboxylate: Self-assembly by hydrogen bonding and ππ interactions. J. Solid State Chem. 2005, 178, 2306–2312. [Google Scholar] [CrossRef]
  86. Mahata, P.; Natarajan, S. Pyridine- and imidazoledicarboxylates of zinc: Hydrothermal synthesis, structure, and properties. Eur. J. Inorg. Chem. 2005, 2156–2163. [Google Scholar] [CrossRef]
  87. Colacio, E.; Ghazi, M.; Kivekas, R.; Moreno, J.M. Helical-chain copper(II) complexes and a cyclic tetranuclear copper(II) complex with single syn−anti carboxylate bridges and ferromagnetic exchange interactions. Inorg.Chem. 2000, 39, 2882–2890. [Google Scholar] [CrossRef] [PubMed]
  88. Zeng, M.H.; Zhou, Y.L.; Ng, S.W. catena-Poly[[diaqua[(Z)-3-(1H-benzimidazol-2-yl)prop-2-enoato-κ2N,O]cobalt(II)]-μ-(Z)-3-(1H-benzimidazol-2-yl)prop-2-enoato-κ2O:O′]. Acta Crystallogr. 2006, E62, m2099–m2100. [Google Scholar] [CrossRef]
  89. Fan, J.; Zhang, Y.A.; Okamura, T.; Zou, Z.H.; Ueyama, N.; Sun, W.Y. Synthesis and crystal structure of a one-dimensional coordination polymer of nickel(II) with 4-(imidazol-1-ylmethyl)benzoate anion. Inorg. Chem. Commun. 2001, 4, 501–503. [Google Scholar] [CrossRef]
  90. Qin, C.; Wang, E.B. catena-Poly[[aqua(4,4′-bipyridine-κN)manganese(II)]-μ-imidazole-4,5-dicarboxylato-κ4N3,O4:O4′,O5]. Acta Crystallogr. 2007, E63, m2876. [Google Scholar] [CrossRef]
  91. Fang, R.Q.; Zhang, X.M. Diversity of coordination architecture of metal 4,5-dicarboxyimidazole. Inorg. Chem. 2006, 45, 4801–4810. [Google Scholar] [CrossRef] [PubMed]
  92. Sun, Y.Q.; Zhang, J.; Yang, G.Y. catena-Poly[[diaquacadmium(II)]-μ-5-carboxyimidazole-4-carboxyl-ato-κ4N1,O5:O4,N3]. Acta Crystallogr. 2004, C60, m590–m591. [Google Scholar]
  93. Yao, Y.L.; Che, Y.X.; Zheng, J.M. Structural and fluorescent characterizations of one-and two-dimensional Cd(II)metal-organic frameworks. Inorg. Chem. Commun. 2008, 11, 883–885. [Google Scholar] [CrossRef]
  94. Guo, Z.G.; Cao, R.; Li, X.J.; Yuan, D.Q.; Bi, W.H.; Zhu, X.D.; Li, Y.F. A Series of cadmium(II) coordination polymers synthesized at different pH. Eur. J. Inorg. Chem. 2007, 5, 742–748. [Google Scholar] [CrossRef]
  95. Bai, Y.L.; Tao, J.; Huang, R.B.; Zheng, L.S. A three-dimensional supramolecular network built with the zigzag chain complex bis(5-carboxy-1H-imidazole-4-carboxylato)copper(II). Acta Crystallogr. 2005, C61, m98–m100. [Google Scholar] [CrossRef] [PubMed]
  96. Lin, X.F. catena-Poly[[aqua(μ-5-carboxyimidazole-4-carboxylato-κ4N3,O4:N1,O5)zinc(II)] hemi-hydrate]. Acta Crystallogr. 2006, E62, m2039–m2040. [Google Scholar]
  97. Hao, L.J.; Yu, T.L. catena-Poly[[(2,2′-bipyridine)nickel(II)]-μ-imidazole-4,5-dicarboxylato]. Acta Crystallogr. 2007, E63, m2374. [Google Scholar] [CrossRef]
  98. Bruijnincx, P.C.A.; Lutz, M.; den Breejen, J.P.; Spek, A.L.; van Koten, G.; Gebbink, R.J.M.K. Zinc complexes of the biomimetic N,N,O ligand family of substituted 3,3-bis(1-alkylimidazol-2-yl)propionates: The formation of oxalate from pyruvate. J. Biol. Inorg. Chem. 2007, 12, 1181–1196. [Google Scholar] [CrossRef] [PubMed]
  99. Drozdzewski, P.; Pawlak, B.; Glowiak, T. Unusual coordination behavior of imidazole-4-acetic acid. Synthesis, crystal structure and vibrational studies of one-dimensional co-ordination polymer of zinc(II) with two different ligand forms. Polyhedron 2002, 21, 2819–2825. [Google Scholar] [CrossRef]
  100. Li, X.M.; Dong, Y.H.; Wang, Q.W.; Liu, B. catena-Poly[[(2,2′-bipyridine-κ2N,N′)zinc(II)]-μ-imidazole-4,5-dicarboxylato-κ4N1,O5:N3,O4]. Acta Crystallogr. 2007, E63, m1274–m1276. [Google Scholar] [CrossRef]
  101. Li, Z.F.; Wang, S.W.; Zhang, Q.; Yu, X.J. catena-Poly[[(2,2′-bipyridine-κ2N,N′)iron(II)]-μ-5-carboxy-4-carboxylatoimidazol-1-ido-κ4N3,O4:N1,O5]. Acta Crystallogr. 2007, E63, m2445. [Google Scholar] [CrossRef]
  102. Akhriff, Y.; Server-Carrio, J.; Sancho, A.; Garcia-Lozano, J.; Escriva, E.; Soto, L. Two polymeric compounds built from mononuclear and tetrameric squarate−copper(II) complexes by deprotonation of 3,3-Bis(2-imidazolyl)propionic acid (HBIP). Synthesis, crystal structure, and magnetic characterization of [Cu(HBIP)(BIP)](C4O4)1/2·2H2O and [{Cu(BIP)(OH2)}4(μ-C4O4)](ClO4)2·4H2O. Inorg. Chem. 2001, 40, 6832–6840. [Google Scholar] [PubMed]
  103. Liu, G.F.; Ren, Z.G.; Chen, Y.; Liu, D.; Li, H.X.; Zhang, Y.; Lang, J.P. Solvothermal synthesis, structure and luminescent properties of a new 3D coordination polymer [K2Cd(Htda)2]n (Htda = 1,2,3-triazole-4,5-dicarboxylate). Inorg. Chem. Commun. 2008, 11, 225–229. [Google Scholar] [CrossRef]
  104. Chandrasekhar, V.; Thilagar, P.; Senapati, T. Transition metal-assisted hydrolysis of pyrazole-appended organooxotin carboxylates accompanied by ligand transfer. Eur. J. Inorg. Chem. 2007, 1004–1009. [Google Scholar] [CrossRef]
  105. Abdeljalil, E.F.; Najib, B.L.; Abdelali, K.; Bali, B.E.; Bolte, M. catena-Poly[[[(3,5-dimethyl-1H-pyrazole-κN2) copper(II)]-μ-[(3,5-dimethyl-1H-pyrazol-1-yl)methylamino]acetato] nitrate monohydrate]. Acta Crystallogr. 2006, E62, m551–m552. [Google Scholar] [CrossRef]
  106. Gao, S.; Liu, J.W.; Huo, L.H.; Zhao, H. catena-Poly[[(2,2′-bipyridine-2N,N′)cadmium(II)]--5-carboxyimidazole-4-carboxylato-4N3,O4:N1,O5]. Acta Crystallogr. 2004, E60, m1728–m1729. [Google Scholar]
  107. Cheng, A.L.; Liu, N.; Zhang, J.Y.; Gao, E.Q. Assembling the cage-based metal−organic network from a cubic metalloligand. Inorg. Chem. 2007, 46, 1034–1035. [Google Scholar] [CrossRef] [PubMed]
  108. Yang, J.H.; Zheng, S.L.; Yu, X.L.; Chen, X.M. Syntheses, structures, and photoluminescent properties of three silver(I) cluster-based coordination polymers with heteroaryldicarboxylate. Cryst. Growth Des. 2004, 4, 831–836. [Google Scholar] [CrossRef]
  109. Han, Z.B.; Ma, Y. Poly[di-μ2-aqua-μ-pyrazole-3,5-dicarboxylato-copper(II)]. Acta Crystallogr. 2006, E62, m2236–m2237. [Google Scholar] [CrossRef]
  110. Chen, H.; Ma, C.B.; Xiang, S.C.; Hu, M.Q.; Si, Y.T.; Chen, C.N.; Liu, Q.T. Synthesis and characterization of vanadium(III) and vanadium(IV) polymers containing 3,5-pyrazoledicarboxylato. J. Coord. Chem. 2008, 61, 3556–3567. [Google Scholar] [CrossRef]
  111. Kasuga, N.C.; Tsuruta, S.; Amano, A.; Nomiya, K. Poly[(μ3-N-acetyl-L-histidinato-κ4N,O:O:O′)silver(I)]. Acta Crystallogr. 2007, E63, m2440. [Google Scholar] [CrossRef]
  112. Akhriff, Y.; Server-Carrio, J.; Sancho, A.; Garcia-Lozano, J.; Escriva, E.; Folgado, J.V.; Soto, L. Synthesis, crystal structure, and magnetic properties of oxalato−copper(II) complexes with 3,3-bis(2-imidazolyl)propionic acid, an imidazole−carboxylate polyfunctional ligand: From mononuclear entities to ladder-like chains. Inorg. Chem. 1999, 38, 1174–1185. [Google Scholar] [CrossRef] [PubMed]
  113. Han, L.; Gong, Y.Q.; Yuan, D.Q.; Hong, M.C. Luminescent 2D supramolecular network constructed from tubular coordination polymer based on H-bonding and pi-pi interactions. J. Mol. Struct. 2006, 789, 128–132. [Google Scholar] [CrossRef]
  114. Meng, W.W.; Chen, J.X. Synthesis and crystal structures of new nickel(Ⅱ) and manganese(Ⅱ) coordination polymers containing 5-benzimidazolecarboxylate ligand. Chin. J. Inorg. Chem. 2008, 24, 1610–1615. [Google Scholar]
  115. Xu, K.; Yu, L.P. catena-Poly[[di-μ-aqua-bis[aquacobalt(II)]]-bis(μ3-1H-benzimidazole-5,6-dicarboxylato). Acta Crystallogr. 2009, E65, m295. [Google Scholar] [CrossRef] [PubMed]
  116. van Koningsbruggen, P.J.; van Hal, J.W.; Muller, E.; de Graaff, V.; G.Haasnoot, J.; Reedijk, J. A novel type of twisted antiparallel double-chain structure with stacking between the two strands. Structure, synthesis and magnetic properties of [{[Cu3L2(dien)(H2O)2]·3H2O}][L = 1H-1,2,4-triazole-3,5-dicarboxylate(3–), dien = 3-Azapentane-1,5-diamine]. J. Chem. Soc. Dalton Trans. 1993, 1371–1376. [Google Scholar] [CrossRef]
  117. Wang, J.J.; Zhang, B.; Shu, H.M.; Du, C.Q.; Hu, H.M. A two-dimensional coordination polymer containing linear trinuclear copper (II) clusters. Acta Crystallogr. 2007, E63, m2190. [Google Scholar] [CrossRef]
  118. Xu, Y.; Wang, R.H.; Lou, B.Y.; Han, L.; Hong, M.C. Poly[iron(II)-di-μ-imidazole-4,5-dicarboxylato-κ3N3,O4:O5]. Acta Crystallogr. 2004, C60, m296–m298. [Google Scholar] [CrossRef] [PubMed]
  119. Guo, Z.G.; Yuan, D.Q.; Bi, W.H.; Li, X.J.; Cao, R. A novel antiferromagnetic nickel coordination framework with 1-H-benzimidazole-5-carboxylic acid. J. Mol. Struct. 2006, 782, 106–109. [Google Scholar] [CrossRef]
  120. Wang, Y.T.; Tang, G.M.; Qin, D.W. Metal-controlled assembly tuning coordination polymers with flexible 2-(1H-imidazole-1-yl)acetic acid (Hima). Aust. J. Chem. 2006, 59, 647–652. [Google Scholar] [CrossRef]
  121. Deng, Q.J.; Zeng, M.H.; Liang, H.; Huang, K.L. Hydrothermal synthesis and crystal structure of a new 2D layered cadmium(II) coordination polymer: [Cd(bimc)2]n (bimc = 1H-Benzimidazole-5-carboxylate). Chin. J. Struct. Chem. 2006, 25, 975–978. [Google Scholar]
  122. Zhang, J.Z.; Cao, W.R.; Pan, J.X.; Chen, Q.W. A novel two-dimensional square grid cobalt complex: Synthesis, structure, luminescent and magnetic properties. Inorg. Chem. Commun. 2007, 10, 1360–1364. [Google Scholar] [CrossRef]
  123. Guo, Z.G.; Li, X.J.; Gao, S.Y.; Li, Y.F.; Cao, R. A new three-dimensional supramolecular network, [Cd(Hbic)2(H2O)]·(4,4′-bpy) ·H2O (H2bic=1-H-benzimidazole-5carboxylic acid; 4,4-bpy=4,4′-bipyridine): Synthesis, crystal structure and luminescence property. J. Mol. Struct. 2007, 846, 123–127. [Google Scholar] [CrossRef]
  124. Wei, Y.Q.; Yu, Y.F.; Wu, K.C. Highly stable five-coordinated Mn(II) polymer [Mn(Hbidc)]n (Hbidc=1H-Benzimidazole-5,6-dicarboxylate): Crystal structure, antiferromegnetic property, and strong long-lived luminescence. Cryst. Growth Des. 2008, 8, 2087–2089. [Google Scholar] [CrossRef]
  125. Yao, Y.L.; Che, Y.X.; Zheng, J.M. The coordination chemistry of benzimidazole-5,6-dicarboxylic acid with Mn(II), Ni(II), and Ln(III) complexes (Ln = Tb, Ho, Er, Lu). Cryst. Growth Des. 2008, 8, 2299–2306. [Google Scholar] [CrossRef]
  126. Martinez-Lorente, M.-A.; Tuchagues, J.-P.; Petrouleas, V.; Savariault, J.-M.; Poinsot, R.; Drillon, M. Bis(4-imidazoleacetato)iron.bis(methanol): a 2D antiferromagnetic iron(II) system exhibiting 3D long-range ordering with a net magnetic moment at 15 K. Inorg. Chem. 1991, 30, 3587–3589. [Google Scholar] [CrossRef]
  127. Sun, W.Y.; Zhang, Y.A.; Okamura, T.; Ye, N.; Ueyama, N. Synthesis and crystal structure of a new two-dimensional coordination polymer, {[CoII(imbz)2]·H2O}n [imbz- = 4-(Imidazol-1-ylmethyl)benzoate anion]. Chem. Lett. 2000, 1222–1223. [Google Scholar] [CrossRef]
  128. Zhao, X.X.; Ma, J.P.; Dong, Y.B.; Huang, R.Q.; Lai, T.S. Construction of metal−organic frameworks (M = Cd(II), Co(II), Zn(II), and Cu(II)) based on semirigid oxadiazole bridging ligands by solution and hydrothermal reactions. Cryst. Growth Des. 2007, 7, 1058–1068. [Google Scholar] [CrossRef]
  129. Ding, D.G.; Xu, H.; Fan, Y.T.; Hou, H.W. Anion-dependent assemblies of two unprecedented copper(II) polymers with four-fold screw axes and trapped sodium chains. Inorg. Chem. Commun. 2008, 11, 1280–1283. [Google Scholar] [CrossRef]
  130. Wang, D.E.; Wang, F.; Meng, X.G.; Ding, Y.; Wen, L.L.; Li, D.F.; Lan, S.M. Syntheses, crystal structures and luminescent properties of three inorganic-organic hybrid frameworks constructed from 4,5-imidazoledicarboxylate. Z. Anorg. Allg. Chem. 2008, 634, 2643–2648. [Google Scholar] [CrossRef]
  131. Gao, S.; Huo, L.H.; Zhao, H.; Liu, J.W. Poly[aquamanganese(II)-μ3-1H-imidazole-4,5-dicarboxylato]. Acta Crystallogr. 2005, E61, m155–m157. [Google Scholar] [CrossRef]
  132. Lu, W.G.; Gu, J.Z.; Jiang, L.; Tan, M.Y.; Lu, T.B. Achiral and chiral coordination polymers containing helical chains: the chirality transfer between helical chains. Cryst. Growth Des. 2008, 8, 192–199. [Google Scholar] [CrossRef]
  133. Lu, J.Y.; Ge, Z.H. Synthesis and structures of two new metal–organic polymers containing imidazoldicarboxylate ligands for hydrogen bonding networks, one with a covalent pleated sheet conformation. Inorg. Chim. Acta 2005, 358, 828–833. [Google Scholar] [CrossRef]
  134. Chen, L.; Bu, X.H. Histidine-controlled two-dimensional assembly of zinc phosphite four-ring units. Chem. Mater. 2006, 18, 1857–1860. [Google Scholar] [CrossRef]
  135. Shi, W.; Chen, X.Y.; Xu, N.; Song, H.B.; Zhao, B.; Cheng, P.; Liao, D.Z.; Yan, S.P. Synthesis, crystal structures, and magnetic properties of 2D manganese(II) and 1D gadolinium(III) coordination polymers with 1H-1,2,3-triazole-4,5-dicarboxylic acid. Eur. J. Inorg. Chem. 2006, 4931–4937. [Google Scholar] [CrossRef]
  136. Yue, Y.F.; Liang, J.; Gao, E.Q.; Fang, C.J.; Yan, Z.G.; Yan, C.H. Supramolecular engineering of a 2D Kagomé lattice: Synthesis, structures, and magnetic properties. Inorg. Chem. 2008, 47, 6115–6117. [Google Scholar] [CrossRef] [PubMed]
  137. Qin, J.; Ma, J.P.; Liu, L.L.; Huang, R.Q.; Dong, Y.B. A novel two-dimensional framework based on unprecedented cadmium(II) chains. Acta Crystallogr. 2009, C65, m66–m68. [Google Scholar]
  138. Zhang, X.F.; Gao, S.; Huo, L.H.; Zhao, H.; Zhao, J.G. Synthesis and crystal structure of 2D coordination polymer [Mn(HIDC)(H2O)]n constructed by 1H-imidazole-4,5-dicarboxylate ligand. Chin. J. Inorg. Chem. 2006, 22, 139–141. [Google Scholar]
  139. Zhang, X.F.; Gao, S.; Huo, L.H.; Zhao, H. Poly[[aquazinc(II)]-μ3-imidazole-4,5-dicarboxylato]. Acta Crystallogr. 2007, E63, m299–m301. [Google Scholar] [CrossRef]
  140. Zhang, X.F.; Gao, S.; Huo, L.H.; Zhao, H. A two-dimensional cadmium(II) coordination polymer with unusual 4.82 topology: poly[aqua(μ3-1H-imidazole-4,5-dicarboxylato)cadmium(II)]. Acta Crystallogr. 2007, E63, m1314–m1316. [Google Scholar]
  141. Wang, Y.T.; Tang, G.M.; Wu, Y.; Qin, X.Y.; Qin, D.W. Metal-controlled assembly tuning the topology and dimensionality of coordination polymers of Ag(I), Cd(II) and Zn(II) with the flexible 2-(1H-imidazole-1-yl)acetic acid (Hima). J. Mol. Struct. 2007, 831, 61–68. [Google Scholar] [CrossRef]
  142. Wu, C.D.; Ayyappan, P.; Evans, O.R.; Lin, W.B. Synthesis and x-ray structures of cadmium coordination polymers based on new pyridine−carboxylate and imidazole−carboxylate linkers. Cryst. Growth Des. 2007, 7, 1690–1694. [Google Scholar] [CrossRef]
  143. Hu, T.L.; Du, W.P.; Hu, B.W.; Li, J.R.; Bu, X.H.; Cao, R. Novel Ag(I) complexes with azole heterocycle ligands bearing acetic acid group: synthesis, characterization and crystal structures. CrystEngComm. 2008, 10, 1037–1043. [Google Scholar] [CrossRef]
  144. Li, X.Z.; Qu, Z.R. Poly[aqua[μ3-5-(2-carboxylatophenyl)-1H-tetrazolato]zinc(II)]. Acta Crystallogr. 2008, E64, m808. [Google Scholar] [CrossRef] [PubMed]
  145. Li, X.Z.; Wu, B.Z.; Qu, Z.R. Poly[diaqua-1κ2O-bis[μ3-2-(1H-tetrazol-5-yl)benzoate-(2)]dicadmium(II)]. Acta Crystallogr. 2008, E64, m1008. [Google Scholar]
  146. Frisch, M.; Cahill, C.L. Syntheses, structures and fluorescent properties of two novel coordination polymers in the U–Cu–H3pdc system. Dalton Trans. 2005, 1518–1523. [Google Scholar] [CrossRef] [PubMed]
  147. Zou, W.Q.; Wang, M.S.; Li, Y.; Wu, A.Q.; Zheng, F.K.; Chen, Q.Y.; Guo, G.C.; Huang, J.S. Unprecedented (3,10)-connected 2-D metal-organic framework constructed from octanuclear cobalt(II) clusters and a new bifunctional ligand. Inorg. Chem. 2007, 46, 6852–6854. [Google Scholar] [CrossRef] [PubMed]
  148. Yao, M.X.; Zeng, M.H.; Zou, H.H.; Zhou, Y.L.; Liang, H. A unique 2D framework containing linear trimeric cobalt(II) of mixed TdOhTd geometries linked by two different single-carboxylate-aromatic amine ligands: structure and magnetic properties. Dalton Trans. 2008, 2428–2432. [Google Scholar] [CrossRef] [PubMed]
  149. Lin, J.D.; Cheng, J.W.; Du, S.W. Five d10 3D metal−organic frameworks constructed from aromatic polycarboxylate acids and flexible imidazole-based ligands. Cryst. Growth Des. 2008, 8, 3345–3353. [Google Scholar] [CrossRef]
  150. Liu, Y.H.; Wu, H.C.; Lin, H.M.; Hou, W.H.; Lu, K.L. Crystal engineering toward intersecting channels in a interpenetrated diamondoid network based on a net-to-net H-bonding interaction. Chem. Commun. 2003, 60–61. [Google Scholar] [CrossRef]
  151. Zou, R.Q.; Zhong, R.Q.; Jiang, L.; Yamada, Y.; Kuriyama, N.; Xu, Q. Tuning the formation of cadmium(II) urocanate frameworks by control of reaction conditions: crystal structure, properties, and theoretical investigation. Chem. Asian J. 2006, 1, 536–543. [Google Scholar] [CrossRef] [PubMed]
  152. Zou, R.Q.; Yamada, Y.; Xu, Q. Strong fluorescent emission of a new fourfold-interpenetrated diamondoid metal-organic framework of zinc(II) urocanate with one-dimensional open channels. Microporous Mesoporous Mater. 2006, 91, 233–237. [Google Scholar] [CrossRef]
  153. Pan, L.; Huang, X.Y.; Li, J. Assembly of new coordination frameworks in a pH-controlled medium: Syntheses, structures, and properties of 3[Cd(Hpdc)(H2O)] and 3[Cd3(pdc)2(H2O)2]. J. Solid State Chem. 2001, 152, 236–246. [Google Scholar] [CrossRef]
  154. Li, J.T.; Tao, J.; Huang, R.B.; Zhang, L.S. Poly[μ4-5-(3-carboxylatophenyl)-1H-tetrazolato-zinc(II)]. Acta Crystallogr. 2005, E61, m984–m985. [Google Scholar] [CrossRef]
  155. Du, M.; Zhang, Z.H.; Tang, L.F.; Wang, X.G.; Zhao, X.J.; Batten, S.R. Molecular tectonics of metal-organic frameworks (MOFs): A rational design strategy for unusual mixed-connected network topologies. Chem. Eur. J. 2007, 13, 2578–2586. [Google Scholar] [CrossRef] [PubMed]
  156. Zhang, X.F.; Gao, S.; Huo, L.H.; Zhao, H. A three-dimensional porous cadmium(II) coordination polymer: poly[[(pyridine-κN)cadmium(II)]-μ3-imidazole-4,5-dicarboxylato-κ6N,O:N′,O′:O′,O′′]. Acta Crystallogr. 2006, E62, m3233–m3235. [Google Scholar] [CrossRef]
  157. Zhang, W.X.; Xue, W.; Lin, J.B.; Zheng, Y.Z.; Chen, X.M. 3D geometrically frustrated magnets assembled by transition metal ion and 1,2,3-triazole-4,5-dicarboxylate as triangular nodes. CrystEngComm. 2008, 10, 1770–1776. [Google Scholar] [CrossRef]
  158. Wang, Y.; Shen, Y.Z. A novel three-dimensional heterometallic coordination polymer: poly[[hexaaquabis[μ3-3,5-dicarboxylatopyrazolato-κ5O3,N2:N1,O5:O5′](μ2-oxalato-κ4O1,O2:O1′, O2′) copper(II)dierbium(III)] trihydrate]. Acta Crystallogr 2008, C64, m283–m285. [Google Scholar] [CrossRef] [PubMed]
  159. Wang, Y.L.; Yuan, D.Q.; Bi, W.H.; Li, X.; Li, X.J.; Li, F.; Cao, R. Syntheses and characterizations of two 3D cobalt−organic frameworks from 2D honeycomb building blocks. Cryst. Growth Des. 2005, 5, 1849–1855. [Google Scholar] [CrossRef]
  160. King, P.; Clérac, R.; Anson, C.E.; Coulon, C.; Powell, A.K. Antiferromagnetic three-dimensional order induced by carboxylate bridges in a two-dimensional network of [Cu3(dcp)2(H2O)4] trimers. Inorg.Chem. 2003, 42, 3492–3500. [Google Scholar] [CrossRef] [PubMed]
  161. Liu, W.L.; Ye, L.H.; Liu, X.F.; Yuan, L.M.; Lu, X.L.; Jiang, J.X. Rapid synthesis of a novel cadmium imidazole-4,5-dicarboxylate metal-organic framework under microwave-assisted solvothermal condition. Inorg. Chem. Commun. 2008, 11, 1250–1252. [Google Scholar] [CrossRef]
  162. Sang, R.L.; Xu, L. Unprecedented helix-based microporous metal–organic frameworks constructed from a single ligand. Chem.Commun. 2008, 6143–6145. [Google Scholar] [CrossRef] [PubMed]
  163. Zhao, J.; Long, L.S.; Huang, R.B.; Zheng, L.S. A lanthanide-based metal–organic framework with a dynamic porous property. Dalton Trans. 2008, 4714–4716. [Google Scholar] [CrossRef] [PubMed]
  164. Li, C.J.; Hu, S.; Li, W.; Lam, C.K.; Zheng, Y.Z.; Tong, M.L. Rational design and control of the dimensions of channels in three-dimensional, porous metal-organic frameworks constructed with predesigned hexagonal layers and pillars. Eur. J. Inorg. Chem. 2006, 1931–1935. [Google Scholar] [CrossRef]
  165. Lu, W.G.; Jiang, L.; Feng, X.L.; Lu, T.B. Three 3D coordination polymers constructed by Cd(II) and Zn(II) with imidazole-4,5-dicarboxylate and 4,4′-bipyridyl building blocks. Cryst. Growth Des. 2006, 6, 564–571. [Google Scholar] [CrossRef]
  166. Zhang, M.B.; Chen, Y.M.; Zheng, S.T.; Yang, G.Y. A 3D manganese coordination polymer [Mn3(IMDC)2(H2O)4] constructed from [Mn2(IMDC)2(H2O)2] layers and [Mn(H2O)2] pillars (IMDC = 4,5-imidazoledicarboxylate). Eur. J. Inorg. Chem. 2006, 1423–1428. [Google Scholar] [CrossRef]
  167. Yao, Y.L.; Che, Y.X.; Zheng, J.M. A new eight-connected CsCl-type net using bicadmium cores as nodes. Inorg. Chem. Commun. 2008, 11, 1253–1255. [Google Scholar] [CrossRef]
  168. Zhong, R.Q.; Zou, R.Q.; Xu, Q. Microporous metal-organic framework zinc(II) imidazole- 4,5-dicarboxylate: Four-fold helical structure and strong fluorescent emission. Microporous Mesoporous Mater. 2007, 102, 122–127. [Google Scholar] [CrossRef]
  169. Lu, W.G.; Jiang, L.; Feng, X.L.; Lu, T.B. four 3d porous metal−organic frameworks with various layered and pillared motifs. Cryst. Growth Des. 2008, 8, 986–994. [Google Scholar] [CrossRef]
  170. Cahill, C.L.; de Lill, D.T.; Frisch, M. Homo- and heterometallic coordination polymers from the f elements. CrystEngComm 2007, 9, 15–26. [Google Scholar] [CrossRef]
  171. Gu, J.Z.; Lu, W.G.; Jiang, L.; Zhou, H.C.; Lu, T.B. 3D porous metal-organic framework exhibiting selective adsorption of water over organic solvents. Inorg. Chem. 2007, 46, 5835–5837. [Google Scholar] [CrossRef] [PubMed]
  172. Wang, S.; Zhang, L.R.; Li, G.H; Huo, Q.S.; Liu, Y.L. Assembly of two 3-D metal–organic frameworks from Cd(II) and 4,5-imidazoledicarboxylic acid or 2-ethyl-4,5-imidazole-dicarboxylic acid. CrystEngComm 2008, 10, 1662–1666. [Google Scholar] [CrossRef]
  173. Pan, L.; Huang, X.Y.; Li, J.; Wu, Y.G.; Zheng, N.W. Novel single- and double-layer and three-dimensional structures of rare-earth metal coordination polymers: The effect of lanthanide contraction and acidity control in crystal structure formation. Angew. Chem., Int. Ed. 2000, 39, 527–530. [Google Scholar] [CrossRef]
  174. Sun, Y.Q.; Yang, G.Y. Organic–inorganic hybrid materials constructed from inorganic lanthanide sulfate skeletons and organic 4,5-imidazoledicarboxylic acid. Dalton Trans. 2007, 3771–3781. [Google Scholar] [CrossRef] [PubMed]
  175. Sun, Y.Q.; Zhang, J.; Yang, G.Y. A series of luminescent lanthanide–cadmium–organic frameworks with helical channels and tubes. Chem. Commun. 2006, 4700–4702. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Not available
Figure 1. Topology of one-dimensional coordination polymers.
Figure 1. Topology of one-dimensional coordination polymers.
Molecules 15 03478 g001
Figure 2. Topology of the uninodal two-dimensional coordination polymers.
Figure 2. Topology of the uninodal two-dimensional coordination polymers.
Molecules 15 03478 g002
Figure 3. Topology of binodal two-dimensional coordination polymers.
Figure 3. Topology of binodal two-dimensional coordination polymers.
Molecules 15 03478 g003
Figure 4. Topology of the uninodal three-dimensional networks.
Figure 4. Topology of the uninodal three-dimensional networks.
Molecules 15 03478 g004
Figure 5. Topology of the binodal three-dimensional networks.
Figure 5. Topology of the binodal three-dimensional networks.
Molecules 15 03478 g005
Figure 6. Topology of the 3-nodal three-dimensional networks.
Figure 6. Topology of the 3-nodal three-dimensional networks.
Molecules 15 03478 g006
Table 1. New Two-Dimensional Topologies.
Table 1. New Two-Dimensional Topologies.
CSD RefcodeTopology DemonstrationVertex Symbol*Nodal ConnectivityNode Types
UFETEF[143] Molecules 15 03478 i001{43.63}4-cuninodal
BIZVEM[144]
GIZSIS[145]
RANBAK[146]
Molecules 15 03478 i002{4.62}2{4.6.4.6}3, 4-c2-nodal
LILYIP[147]
(Considering an octacobalt cluster as a single node)
Molecules 15 03478 i003{32.4}2{36.4.32.4}3,10-c2-nodal
JOCGIS[148] Molecules 15 03478 i004{3.4.5.62.7}2{3.6.7}2{32.42.52.62.76.8}*3,4,6-c3-nodal
KOBHEP[40] Molecules 15 03478 i005{43.6}{44}{43}{42,62}3,4,4,4-c4-nodal
KOBHAL[40] Molecules 15 03478 i006{3.42.6}{32.43}{3.42}{32.4.62}3,4,5,5-c4-nodal
* Symbols annotated with asterisk are point symbols (Schläfli symbol).
Table 2. New Three-Dimensional Topologies.
Table 2. New Three-Dimensional Topologies.
CSD RefcodeTopology DemonstrationPoint Symbol (Schläfli Symbol)Nodal ConnectivityNode Types
UFETAB[143] Molecules 15 03478 i007{66} 4,4-cuninodal
POLDOK[129]
POLDUQ[129]
Molecules 15 03478 i008{42.84} 4-cuninodal
MOFTIL[46]
MOFTIL01[47]
Molecules 15 03478 i009{66} 4,4-cuninodal
ACUXAY[166] Molecules 15 03478 i010{4.82}{4.85}3,4-cbinodal
BOHVEA[44]
BOHVIE[44]
Molecules 15 03478 i011{4.82.103}{4.82}3,4-c2-nodal
XECBOX[165] Molecules 15 03478 i012{103}3,3-cuninodal
MEVBIZ[151] Molecules 15 03478 i013{4.6.8}{4.62.8.102}3,4-c2-nodal
PEXSOB[93]
PEXSOB01[167]
Molecules 15 03478 i014{4.62}{4.67.82} 3,5-c2-nodal
QEYWOH[155] Molecules 15 03478 i015{42.6}2{44.62.87.102}3,6-c2-nodal
YELYUK[92] Molecules 15 03478 i016{42.84}{46.66.83}{48.62}2 4,5,6-c3-nodal
GIDKOU[168] Molecules 15 03478 i017{42.52.72.84} {42.52.72}2{42.84}4,4,4,5-c3-nodal
UFARUP[169] Molecules 15 03478 i018{42.52.72.84} {42.52.72}2{42.84}4,4,4,5,5-c3-nodal
UFASAW[169] Molecules 15 03478 i019{4.5.63.7}4 {42.52.64.72}2{52.84} 4,4,4,5,5-c3-nodal
DIXVUC[39] Molecules 15 03478 i020{4.82}6{43}{46.64}3{812.123}3,3,5,6-c4-nodal
CETGEO[170] Molecules 15 03478 i021{4.84.10}{4.92}{8.92}{93}3,3,3,4-c4-nodal
KOCWEF[41] Molecules 15 03478 i022{3.4.62.72}{3.43.52.6.72.8}{32.44.52.62}{32.45.5.64.73} 4,4,5,5,5,5,6,6-c4-nodal
WIJDAV[171] Molecules 15 03478 i023{6.102}{6.8.10}2{8.102}3,3,3,3-c4-nodal
LIZWEX[49] Molecules 15 03478 i024{4.6.82.102}6{42.6}6 {43}2{62.84}3 3,3,4,4-c4-nodal
XECBIR[165] Molecules 15 03478 i025{4.62.82.9}2{4.82}2{42.52.6.72.83}{42.52.72}2 {42.6.83}3,4,4,4,5-c5-nodal
KOLWUE[172] Molecules 15 03478 i026{4.62}{4.64.84.10}{4.64.8}{4.82}{63} 3,3,3,4,5-c5-nodal
KEPMIB[173] Molecules 15 03478 i027{4.6.83.10}{4.6.8}2{43.66.86}{43.83} 3,3,4,4,6-c5-nodal
GIKBOS[174] Molecules 15 03478 i028{4.6.8}{42.63.8}{43.62.8}{44.65.86}{45.64.8} 3,4,4,5,6-c5-nodal
YELYOE[92] Molecules 15 03478 i029{42.52.62}2{42.52.72.84} {42.54.84}{43.5.62.72.82}2 {47.5.62}2 4,5,5,5,5-c5-nodal
NEVHEC[175]
NEVHIG[175]
NEVHOM[175]
NEVHUS[175]
NEVJAA[175]
NEVJEE[175]
NEVJII[175]
NEVJOO[175]
NEVJUU[175]
Molecules 15 03478 i030{4.82}{4.85}{42.88}{46}3,4,4,5-c4-nodal

Share and Cite

MDPI and ACS Style

Deng, Y.; Liu, H.; Yu, B.; Yao, M. Supramolecular Coordination Assemblies Constructed From Multifunctional Azole-Containing Carboxylic Acids. Molecules 2010, 15, 3478-3506. https://doi.org/10.3390/molecules15053478

AMA Style

Deng Y, Liu H, Yu B, Yao M. Supramolecular Coordination Assemblies Constructed From Multifunctional Azole-Containing Carboxylic Acids. Molecules. 2010; 15(5):3478-3506. https://doi.org/10.3390/molecules15053478

Chicago/Turabian Style

Deng, Yuheng, Hao Liu, Bo Yu, and Min Yao. 2010. "Supramolecular Coordination Assemblies Constructed From Multifunctional Azole-Containing Carboxylic Acids" Molecules 15, no. 5: 3478-3506. https://doi.org/10.3390/molecules15053478

Article Metrics

Back to TopTop