Solid State Polyselenides and Polytellurides: A Large Variety of Se–Se and Te–Te Interactions
Abstract
1. Introduction
2. Results and Discussion
2.1. Molecular units in polyselenides and polytellurides
2.1.1. Oligomeric Qn2– motifs
2.1.2. Oligomeric Qn4– motifs
2.2. Infinite motifs in polyselenides and polytellurides
2.2.1. One-dimensional motifs: chains
2.2.2. One-dimensional motifs: Ribbons
2.2.3. Two-dimensional motifs: Layers
2.2.4. Two-dimensional motifs: Chains connected to layers
2.2.5. Two-dimensional motifs: oligomeric units connected to layers
2.2.6. Three-dimensional motifs
3. Conclusions
Acknowledgements
References and Notes
- Kosbar, L.L.; Murray, C.E.; Copel, M.; Afzali, A.; Mitzi, D.B. High-mobility ultrathin semiconducting films prepared by spin coating. Nature 2004, 428, 299–303. [Google Scholar][Green Version]
- Lange, S.; Nilges, T. Ag10Te4Br3: A new silver(I) (poly)chalcogenide halide solid electrolyte. Chem. Mater. 2006, 18, 2538–2544. [Google Scholar] [CrossRef]
- Zheng, N.; Bu, X.; Feng, P. Synthetic design of crystalline inorganic chalcogenides exhibiting fast-ion conductivity. Nature 2003, 426, 428–432. [Google Scholar] [CrossRef] [PubMed]
- Tarascon, J.-M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Atwood, G. Phase-change materials for electronic memories. Science 2008, 321, 210–211. [Google Scholar] [CrossRef] [PubMed]
- Lencer, D.; Salinga, M.; Grabowski, B.; Hickel, T.; Neugebauer, J.; Wuttig, M. A map for phase-change materials. Nat. Mater. 2008, 7, 972–977. [Google Scholar] [CrossRef] [PubMed]
- Yamada, N.; Wuttig, M. Phase-change materials for rewriteable data storage. Nat. Mater. 2007, 6, 824–832. [Google Scholar]
- Zakery, A.; Elliott, S.R. Optical properties and applications of chalcogenide glasses: A review. J. Non-Cryst. Sol. 2003, 330, 1–12. [Google Scholar] [CrossRef]
- Lowhorn, N.D.; Tritt, T.M.; Abbott, E.E.; Kolis, J.W. Enhancement of the power factor of the transition metal pentatelluride HfTe5 by rare-earth doping. Appl. Phys. Lett. 2006, 88, 022101:1–022101:3. [Google Scholar] [CrossRef]
- Rowe, D.M. Thermoelectrics Handbook: Macro to Nano; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2006. [Google Scholar]
- Sootsman, J.R.; Kong, H.; Uher, C.; D’Angelo, J.J.; Wu, C.-I.; Hogan, T.P.; Caillat, T.; Kanatzidis, M.G. Large enhancements in the thermoelectric power factor of bulk PbTe at high temperature by synergistic nanostructuring. Angew. Chem. Int. Ed. 2008, 47, 8618–8622. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Kleinke, K.M.; Holgate, T.; Zhang, H.; Su, Z.; Tritt, T.M.; Kleinke, H. Thermoelectric performance of NiyMo3Sb7-xTex (y ≤ 0.1, 1.5 ≤ x ≤ 1.7). J. Appl. Phys. 2009, 105, 053703:1–053703:5. [Google Scholar] [CrossRef]
- Böttcher, P.; Getzschmann, J.; Keller, R. Zur Kenntnis der Dialkalimetalldichalkogenide β-Na2S2, K2S2, α-Rb2S2, β-Rb2S2, K2Se2, Rb2Se2, α-K2Te2, β-K2Te2 und Rb2Te2. Z. Anorg. Allg. Chem. 1993, 619, 476–478. [Google Scholar] [CrossRef]
- Schäfer, H.; Eisenmann, B.; Müller, W. Zintl Phases: Transitions between metallic and ionic bonding. Angew. Chem. Int. Ed. Engl. 1973, 12, 694–712. [Google Scholar] [CrossRef]
- Nesper, R. Zintl-phases containing Li. Prog. Solid State Chem. 1990, 20, 1–45. [Google Scholar] [CrossRef]
- Kauzlarich, S.M. Chemistry, Structure, and Bonding of Zintl Phases and Ions; VCH: New York, NY, USA, 1996. [Google Scholar]
- Siegel, S.G. Crystallographic studies of XeF2 and XeF4. J. Am. Chem. Soc. 1963, 85, 240–240. [Google Scholar] [CrossRef]
- Curnow, O.J. A Simple qualitative molecular-orbital/valence-bond description for the bonding in main group "hypervalent" molecules. J. Chem. Educ. 1998, 75, 910–915. [Google Scholar] [CrossRef]
- Papoian, G. A.; Hoffmann, R. Hypervalent bonding in one, two, and three dimensions: Extending the Zintl-Klemm concept to nonclassical electron-rich networks. Angew. Chem. Int. Ed. 2000, 39, 2408–2448. [Google Scholar] [CrossRef]
- Böttcher, P. Tellurium-Rich Tellurides. Angew. Chem. Int. Ed. Engl. 1988, 27, 759–772. [Google Scholar] [CrossRef]
- Patschke, R.; Kanatzidis, M.G. Polytelluride compounds containing distorted nets of tellurium. Phys. Chem. Chem. Phys. 2002, 4, 3266–3281. [Google Scholar] [CrossRef]
- Xu, J.; Kleinke, H. Unusual Sb–Sb bonding in high temperature thermoelectric materials. J. Comput. Chem. 2008, 29, 2134–2143. [Google Scholar] [CrossRef] [PubMed]
- Kanatzidis, M.G. From cyclo-Te8 to Texn- Sheets: Are Nonclassical Polytellurides More Classical than We Thought? Angew. Chem. Int. Ed. Engl. 1995, 34, 2109–2111. [Google Scholar] [CrossRef]
- Böttcher, P.; Doert, T. Chalcogen-rich chalcogenides: from the first ideas to a still growing field of research. Phosphorus, Sulfur, Silicon 1998, 136-138, 255–282. [Google Scholar] [CrossRef]
- Smith, D.M.; Ibers, J.A. Syntheses and solid-state structural chemistry of polytelluride anions. Coord. Chem. Rev. 2000, 200-202, 187–205. [Google Scholar] [CrossRef]
- Föppl, H.; Busmann, E.; Frorath, F.K. Die Kristallstrukturen von α-Na2S2 und K2S2, β-Na2S2 und Na2Se2. Z. Anorg. Allg. Chem. 1962, 314, 12–29. [Google Scholar] [CrossRef]
- Batchelor, R.J.; Einstein, F.W.B.; Gay, I.D.; Jones, C.H.W.; Sharma, R.D. Syntheses and solid-state NMR of tetrabutylammonium hydrogen telluride, tetramethylammonium hydrogen selenide and bis(tetramethylammonium) ditelluride and x-ray crystal structures of Me4NSeH and (Me4N)2Te2. Inorg. Chem. 1993, 32, 4378–4383. [Google Scholar] [CrossRef]
- Thiele, K.-H.; Steinicke, A.; Dümichen, U.; Neumüller, B. Darstellung und Reaktionen von Natriumtellurid, Na2Te - Kristallstruktur von [Na(CH3OH)3]2Te2. Z. Anorg. Allg. Chem. 1996, 622, 231–234. [Google Scholar] [CrossRef]
- Pauling, L. The Nature of the Chemical Bond, 3rd ed.; Cornell University Press: Ithaca, NY, USA, 1948. [Google Scholar]
- Böttcher, P. Die Kristallstruktur von K2S3 und K2Se3. Z. Anorg. Allg. Chem. 1977, 432, 167–172. [Google Scholar] [CrossRef]
- Assoud, A.; Soheilnia, N.; Kleinke, H. Band gap tuning in new strontium seleno-stannates. Chem. Mater. 2004, 16, 2215–2221. [Google Scholar] [CrossRef]
- Assoud, A.; Soheilnia, N.; Kleinke, H. The new semiconducting polychalcogenide Ba2SnSe5 exhibiting Se32- units and distorted SnSe6 octahedra. J. Solid State Chem. 2005, 178, 1087–1093. [Google Scholar] [CrossRef]
- Eisenmann, B.; Schäfer, H. K2Te3: The first binary alkali-metal polytelluride with Te32- ions. Angew. Chem. Int. Ed. Engl. 1978, 17, 684. [Google Scholar] [CrossRef]
- Cui, Y.; Assoud, A.; Xu, J.; Kleinke, H. Structures and Physical Properties of new Semiconducting gold and copper polytellurides: Ba7Au2Te14 and Ba6.76Cu2.42Te14. Inorg. Chem. 2007, 46, 1215–1221. [Google Scholar] [CrossRef] [PubMed]
- Getzschmann, J.R.; Rönsch, E.; Böttcher, P. Crystal structure of dinatriumtetraselenide, Na2Se4. Z. Kristallogr. -NCS 1997, 212, 87. [Google Scholar]
- Huffman, J.C.; Haushalter, R.C. Preparation and crystal structure of (Ph4P)2Te4·2CH3OH. Z. Anorg. Allg. Chem. 1984, 518, 203–209. [Google Scholar] [CrossRef]
- Müller, V.; Frenzen, G.; Dehnicke, K.; Fenske, D. Synthese, FIR-Spektren und Kristallstrukturen der Pentaselenide K2Se5 und (Na(15-Krone-5))2Se5. Z. Naturforsch. B 1992, 47, 205–210. [Google Scholar] [CrossRef]
- Weller, F.; Adel, J.; Dehnicke, K. Polyselenide mit langkettigen Tetraalkylammoniumionen. Die Kristallstruktur von Trimethyl-tetradecyl-ammonium-hexaselenid. Z. Anorg. Allg. Chem. 1987, 548, 125–132. [Google Scholar] [CrossRef]
- Warren, C.J.; Haushalter, R.C.; Bocarsly, A.B. Electrochemical synthesis of a pseudo-two-dimensional polytelluride containing Te122- anions: Structure of [(C2H5)4N]2Te12. J. Alloys Compd. 1996, 233, 23–29. [Google Scholar] [CrossRef]
- Sheldrick, W.S.; Wachhold, M. Synthesis and structure of Cs2Te13 and Cs4Te28, tellurium-rich tellurides on the methanolothermal route to Cs3Te22. Chem. Commun. 1996, 607–608. [Google Scholar] [CrossRef]
- Assoud, A.; Xu, J.; Kleinke, H. Structures and physical properties of new semiconducting polyselenides Ba2CuδAg4-δSe5 with unprecedented linear Se34- units. Inorg. Chem. 2007, 46, 9906–9911. [Google Scholar] [CrossRef] [PubMed]
- Dürichen, P.; Bolte, M.; Bensch, W. Synthesis, crystal structure, and properties of polymeric Rb12Nb6Se35, a novel ternary niobium selenide consisting of infinite anionic chains built up by Nb2Se11 units containing an uncommon Se34--fragment. J. Solid State Chem. 1998, 140, 97–102. [Google Scholar] [CrossRef]
- Tasman, H.A.; Boswijk, K.H. Reinvestigation of the crystal structure of CsI3. Acta Crystallogr. 1955, 8, 59–60. [Google Scholar] [CrossRef]
- Mooney-Slater, R.C.L. The triiodide ion in tetraphenylarsonium triiodide. Acta Crystallogr. 1959, 12, 187–196. [Google Scholar] [CrossRef]
- Rundle, R.E. On the Problem Structure of XeF4 and XeF2. J. Am. Chem. Soc. 1963, 85, 112–113. [Google Scholar] [CrossRef]
- Cordier, G.; Schäfer, H.; Stelter, M. Darstellung und Struktur der Verbindung Ca14AlSb11. Z. Anorg. Allg. Chem. 1984, 519, 183–188. [Google Scholar] [CrossRef]
- Kim, H.; Olmstead, M.M.; Klavins, P.; Webb, D.J.; Kauzlarich, S.M. Structure, magnetism, and colossal magnetoresistance (CMR) of the ternary transition metal solid solution Ca14-xEuxMnSb11 (0 < x <14). Chem. Mater. 2002, 14, 3382–3390. [Google Scholar]
- Brown, S.R.; Kauzlarich, S.M.; Gascoin, F.; Snyder, G.J. Yb14MnSb11: New high efficiency thermoelectric material for power generation. Chem. Mater. 2006, 18, 1873–1877. [Google Scholar] [CrossRef]
- Lu, Y.; Ibers, J.A. Synthesis and characterization of the new quaternary one-dimensional chain materials, potassium copper niobium selenides, K2CuNbSe4 and K3CuNb2Se12. Inorg. Chem. 1991, 30, 3317–3320. [Google Scholar] [CrossRef]
- Sunshine, S.A.; Ibers, J.A. Redetermination of the structures of CuTaS3 and Nb2Se9. Acta Crystallogr. C 1987, 43, 1019–1022. [Google Scholar] [CrossRef]
- Böttcher, P.; Keller, R. The crystal structure of NaTe and its relationship to tellurium-rich tellurides. J. Less-Common Met. 1985, 109, 311–321. [Google Scholar] [CrossRef]
- Assoud, A.; Derakhshan, S.; Soheilnia, N.; Kleinke, H. Electronic structure and physical properties of the semiconducting polytelluride Ba2SnTe5 with a unique Te54- unit. Chem. Mater. 2004, 16, 4193–4198. [Google Scholar] [CrossRef]
- Apblett, A.; Grein, F.; Johnson, J.P.; Passmore, J.; White, P.S. Preparation and X-ray crystal structure of [I5+][AsF6-], an electronic structure of the I5+ cation. Inorg. Chem. 1986, 25, 422–426. [Google Scholar] [CrossRef]
- McConnachie, J.M.; Ansari, M.A.; Bollinger, J.C.; Salm, R.J.; Ibers, J.A. Synthesis and structural characterization of the telluroargentate [PPh4]2[NEt4][AgTe7] and telluromercurate [PPh4]2[HgTe7] compounds containing the unprecedented η3-Te74- polytelluride anion. Inorg. Chem. 1993, 32, 3201–3202. [Google Scholar] [CrossRef]
- Smith, D.M.; Roof, L.C.; Ansari, M.A.; McConnachie, J.M.; Bollinger, J.C.; Pell, M.A.; Salm, R.J.; Ibers, J.A. Synthesis, reactivity, and structural characterization of the nonclassical [MTe7]n- Anions (M = Ag, Au, n = 3; M = Hg, n = 2). Inorg. Chem. 1996, 35, 4999–5006. [Google Scholar] [CrossRef] [PubMed]
- Eisenmann, B.; Schwerer, H.; Schäfer, H. Plane, zu Ketten verknüpfte Te56--Anionen im K2SnTe5. Mat. Res. Bull. 1983, 18, 383–387. [Google Scholar] [CrossRef]
- Bernstein, J.; Hoffmann, R. Hypervalent Tellurium in One-Dimensional Extended Structures Containing Te5n- Units. Inorg. Chem. 1985, 24, 4100–4108. [Google Scholar] [CrossRef]
- Harbrecht, B.; Selmer, A. Rhenium selenide tellurides Re2SexTe5-x: The structure of Re6Se8Te7. Z. Anorg. Allg. Chem. 1994, 620, 1861–1866. [Google Scholar] [CrossRef]
- Anderko, K.; Schubert, K. Untersuchungen im System Kupfer-Tellur. Z. Metallk. 1954, 45, 371–378. [Google Scholar]
- Klein-Haneveld, A.J.; Jellinek, F. The crystal structure of stoichiometric uranium ditelluride. J. Less-Common Met. 1970, 21, 45–49. [Google Scholar] [CrossRef]
- Schewe-Miller, I.; Böttcher, P. Ternäre Telluride mit W5Si3-Typ-Struktur: MxK4Te3 (M=Ca, Sr). J. Alloys Compd. 1992, 183, 98–108. [Google Scholar] [CrossRef]
- Peierls, R.E. Quantum Theory of Solids; Clarendon Press: Oxford, UK, 1955. [Google Scholar]
- Schewe-Miller, I.; Böttcher, P. Synthesis and crystal structures of K5Se3, Cs5Te3 and Cs2Te. Z. Kristallogr. 1991, 196, 137–151. [Google Scholar] [CrossRef]
- Schewe-Miller, I.; Böttcher, P. Darstellung und Kristallstruktur des K5Te3. Z. Naturforsch. B 1990, 45, 417–422. [Google Scholar] [CrossRef]
- Stöwe, K. The Phase Transition of TlTe: Crystal Structure. J. Solid State Chem. 2000, 149, 123–132. [Google Scholar] [CrossRef]
- Doert, T.; Cardoso Gil, R.H.; Böttcher, P. The crystal structure of Tl2Te3 - a reinvestigation. Z. Anorg. Allg. Chem. 1999, 625, 2160–2163. [Google Scholar] [CrossRef]
- Valentine, D.Y.; Cavin, O.B.; Yakel, H.L., Jr. On the crystal structure of LiTe3. Acta Crystallogr. B 1977, 33, 1389–1396. [Google Scholar] [CrossRef]
- Bradley, A.J. The crystal structure of Te. Philos. Mag. 1924, 48, 477–496. [Google Scholar] [CrossRef]
- Böttcher, P.; Kretschmann, U. Darstellung und Kristallstruktur von Dicaesiumpentatellurid Cs2Te5. Z. Anorg. Allg. Chem. 1982, 491, 39–46. [Google Scholar] [CrossRef]
- Böttcher, P.; Kretschmann, U. Darstellung und Kristallstruktur von Dirubidiumpentatellurid, Rb2Te5. J. Less-Common Met. 1983, 95, 81–91. [Google Scholar] [CrossRef]
- Sutherland, H.H.; Hogg, J.H.C.; Walton, P.D. Indium polytelluride In2Te5. Acta Crystallogr. B 1976, 32, 2539–2541. [Google Scholar] [CrossRef]
- Ienco, A.; Proserpio, D. M.; Hoffmann, R. Main group element nets to a T. Inorg. Chem. 2004, 43, 2526–2540. [Google Scholar] [CrossRef] [PubMed]
- Böhm, H.; von Schnering, H.G. The modulated structure of niobium tetratelluride NbTe4. Z. Kristallogr. 1985, 171, 41–64. [Google Scholar]
- Assoud, A.; Kleinke, K.M.; Soheilnia, N.; Kleinke, H. T-shaped nets of Sb atoms in the binary antimonide Hf5Sb9. Angew. Chem. Int. Ed. 2004, 43, 5260–5262. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Kleinke, K.M.; Kleinke, H. electronic structure and physical properties of Hf5Sb9 containing a unique T net of Sb atoms. Z. Anorg. Allg. Chem. 2008, 634, 2367–2372. [Google Scholar] [CrossRef]
- Böttcher, P.; Kretschmann, U. Darstellung und Kristallstruktur von CsTe4. Z. Anorg. Allg. Chem. 1985, 523, 145–152. [Google Scholar] [CrossRef]
- Sheldrick, W.S.; Wachhold, M. Discrete crown-shaped Te8 rings in Cs3Te22. Angew. Chem. Int. Ed. Engl. 1995, 34, 450–451. [Google Scholar] [CrossRef]
- Liu, Q.; Goldberg, N.; Hoffmann, R. A 2,3-connected tellurium net and the Cs3Te22 phase. Chem. Eur. J. 1996, 2, 390–7. [Google Scholar] [CrossRef]
- Stöwe, K. Contributions to the crystal chemistry of uranium tellurides. III. Temperature-dependent structural investigations on uranium ditelluride. J. Solid State Chem. 1996, 127, 202–210. [Google Scholar] [CrossRef]
- Stöwe, K. Beiträge zur Kristallchemie der Urantelluride. II. Die Kristallstruktur des Diuranpentatellurids U2Te5. Z. Anorg. Allg. Chem. 1996, 622, 1423–1427. [Google Scholar] [CrossRef]
- Stöwe, K. Beiträge zur Kristallchemie der Urantelluride. I. Die Kristallstruktur des α-Urantritellurids. Z. Anorg. Allg. Chem. 1996, 622, 1419–1422. [Google Scholar] [CrossRef]
- Krönert, W.; Plieth, K. Die Struktur des Zirkontriselenids ZrSe3. Z. Anorg. Allg. Chem. 1965, 336, 207–218. [Google Scholar] [CrossRef]
- Felser, C.; Finckh, E.W.; Kleinke, H.; Rocker, F.; Tremel, W. Electronic properties of ZrTe3. J. Mater. Chem. 1998, 8, 1787–1798. [Google Scholar] [CrossRef]
- Noel, H. Crystal structure of the low-dimensional uranium pentatulluride: UTe5. Inorg. Chim. Acta 1985, 109, 205–207. [Google Scholar] [CrossRef]
- Patschke, R.; Heising, J.; Schindler, J. L.; Kannewurf, C. R.; Kanatzidis, M. Site occupancy wave and unprecedented infinite zigzag (Te22-)n chains in the flat Te nets of the new ternary rare earth telluride family. J. Solid State Chem. 1998, 135, 111–115. [Google Scholar] [CrossRef]
- Fokwa, B.P.T.; Doert, T. The ternary rare-earth polychalcogenides LaSeTe2, CeSeTe2, PrSeTe2, NdSeTe2, and SmSeTe2: Syntheses, crystal structures, electronic properties, and charge-density-wave-transitions. Solid State Sci. 2005, 7, 573–587. [Google Scholar] [CrossRef]
- Getzschmann, J.; Böttcher, P.; Kaluza, W. Darstellung und Kristallstrukturen von β-Rb2Te2 und Cs2Te2 sowie die Verfeinerung der Strukturen von Ca2P2 und Sr2As2. Z. Kristallogr. 1996, 211, 90–95. [Google Scholar] [CrossRef]
- Dürichen, P.; Bensch, W. Cesium gadolinium tetratelluride. Acta Crystallogr. C 1997, 53, 267–269. [Google Scholar]
- Stöwe, K. Syntheses and crystal structures of KPrTe4, KGdTe4 and RbGdTe4. Solid State Sci. 2003, 5, 765–769. [Google Scholar] [CrossRef]
- Sheldrick, W.S.; Schaaf, B. RbTe6, ein Polytellurid mit Schichtstruktur [Te6-]. Z. Naturforsch. B 1994, 49, 993–996. [Google Scholar] [CrossRef]
- Klepp, K.O.; Ipser, H. CrTe3 - A novel transition-Metal polytelluride. Angew. Chem. Int. Ed. Engl. 1982, 21, 911. [Google Scholar] [CrossRef]
Sample Availability: Not available. |
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Graf, C.; Assoud, A.; Mayasree, O.; Kleinke, H. Solid State Polyselenides and Polytellurides: A Large Variety of Se–Se and Te–Te Interactions. Molecules 2009, 14, 3115-3131. https://doi.org/10.3390/molecules14093115
Graf C, Assoud A, Mayasree O, Kleinke H. Solid State Polyselenides and Polytellurides: A Large Variety of Se–Se and Te–Te Interactions. Molecules. 2009; 14(9):3115-3131. https://doi.org/10.3390/molecules14093115
Chicago/Turabian StyleGraf, Christian, Abdeljalil Assoud, Oottil Mayasree, and Holger Kleinke. 2009. "Solid State Polyselenides and Polytellurides: A Large Variety of Se–Se and Te–Te Interactions" Molecules 14, no. 9: 3115-3131. https://doi.org/10.3390/molecules14093115
APA StyleGraf, C., Assoud, A., Mayasree, O., & Kleinke, H. (2009). Solid State Polyselenides and Polytellurides: A Large Variety of Se–Se and Te–Te Interactions. Molecules, 14(9), 3115-3131. https://doi.org/10.3390/molecules14093115