Antioxidant Effects of Some Drugs on Immobilization Stress Combined with Cold Restraint Stress
Abstract
:Introduction
Results and Discussion
Enzyme | OO group | IO group | IM group | IT group | IB group | IH group | IA group |
---|---|---|---|---|---|---|---|
XOD | 8.33±0.84 | 1.91±0.19c | 2.91±0.40c,e | 3.33±0.10c,f | 2.44±0.31c,d | 2.84±0.36c,e | 2.11±0.17 c |
CAT | 4.42±0.29 | 14.40±0.55c | 19.28±1.98c,e | 16.29±0.45c,f | 12.39±0.48c,f | 24.20±1.33c,f | 15.44±1.07c |
Lpx | 0.65±0.09 | 0.66±0.04 | 0.70±0.04 | 0.61±0.04 | 0.68±0.02 | 0.65±0.04 | 0.72±0.06 |
Px | 11.36±1.91 | 10.58±0.95 | 10.97±0.88 | 11.73±1.20 | 11.08±1.71 | 17.22±1.51b,f | 15.22±1.09b,f |
GSH | 2.69±0.28 | 0.53±0.09c | 0.99±0.19c,e | 1.05±0.12c,f | 0.52±0.08c | 0.78±0.08c,e | 1.18±0.41c,d |
GSHPx | 0.96±0.12 | 0.41±0.14c | 0.58±0.04c, d | 0.36±0.05c | 0.35±0.07c | 0.44±0.05c | 0.38±0.08c |
GSHR | 2.93±0.20 | 4.02±0.33c | 4.19±0.49b | 3.42±0.10b,e | 4.88±0.16c,e | 5.09±0.76c,d | 4.17±0.28c |
XOD | 00 | I0 | IM | IT | IB | IH | CAT | 00 | I0 | IM | IT | IB | IH |
I0 | 6.42 + | I0 | 9.98 + | ||||||||||
IM | 5.42 + | 1.00 + | IM | 14.85 + | 4.88 + | ||||||||
IT | 4.99 + | 1.42 + | 0.43 + | IT | 11.87 + | 1.90 + | 2.98 + | ||||||
IB | 5.88 + | 0.54 + | 0.46 + | 0.89 + | IB | 7.97 + | 2.01 + | 6.89 + | 3.91 + | ||||
IH | 5.49 + | 0.93 + | 0.07 - | 0.49 + | 0.40 + | IH | 19.78 + | 9.80 + | 4.92 + | 7.91 + | 11.81 + | ||
IA | 6.22 + | 0.20 - | 0.80 + | 1.22 + | 0.34 + | 0.73 + | IA | 11.01 + | 1.04 + | 3.84 + | 0.86 - | 3.05 + | 8.76 + |
LPx | 00 | I0 | IM | IT | IB | IH | Px | 00 | I0 | IM | IT | IB | IH |
I0 | 0.01 - | I0 | 0.78 - | ||||||||||
IM | 0.05 + | 0.04 - | IM | 0.40 - | 0.38 - | ||||||||
IT | 0.04 - | 0.05+ | 0.09 + | IT | 0.37 - | 1.15 + | 0.76 - | ||||||
IB | 0.03 - | 0.02 - | 0.02 - | 0.07 + | IB | 0.28 - | 0.50 - | 0.12 - | 0.65 - | ||||
IH | 0.00 - | 0.01 - | 0.05 + | 0.04 - | 0.03 - | IH | 5.86 + | 6.64 + | 6.26 + | 5.49 + | 6.14 + | ||
IA | 0.08 + | 0.07 + | 0.03 - | 0.12 + | 0.04 - | 0.08 + | IA | 3.85 + | 4.64 + | 4.25 + | 3.49 + | 4.14 + | 2.01 + |
GSH | 00 | I0 | IM | IT | IB | IH | GSHPx | 00 | I0 | IM | IT | IB | IH |
I0 | 2.16 + | I0 | 0.55 + | ||||||||||
IM | 1.70 + | 0.46 + | IM | 0.38 + | 0.16 + | ||||||||
IT | 1.64 + | 0.52 + | 0.05 - | IT | 0.60 + | 0.05 - | 0.22 + | ||||||
IB | 2.17 + | 0.01 - | 0.47 + | 0.52 + | IB | 0.61 + | 0.06 + | 0.23 + | 0.01 - | ||||
IH | 1.91 + | 0.25 + | 0.21 + | 0.27 + | 0.25 + | IH | 0.52 + | 0.03 - | 0.14 + | 0.08 + | 0.09 + | ||
IA | 1.51 + | 0.65 + | 0.19 + | 0.14 - | 0.66 + | 0.41 + | IA | 0.58 + | 0.04 - | 0.20 + | 0.01 - | 0.03 - | 0.06 - |
GSHR | 00 | I0 | IM | IT | IB | IH | |||||||
I0 | 1.09 + | ||||||||||||
IM | 1.25 + | 0.17 - | |||||||||||
IT | 0.49 + | 0.60 + | 0.76 + | ||||||||||
IB | 1.95 + | 0.86 + | 0.69 + | 1.46 + | |||||||||
IH | 2.15 + | 1.07 + | 0.90 + | 1.66 + | 0.21 - | ||||||||
IA | 1.24 + | 0.15 - | 0.02 - | 0.75 + | 0.71 + | 0.92 + |
3. Experimental Section
3.1. General
3.2. Chemicals
3.3. Animal treatment
3.4. Biochemical assays
3.5. Statistical analysis
4. Conclusions
Acknowledgements
References and Notes
- Robert, A.; Szabo, S. Stress ulcers. In Seyles Guide to Stress Research; Seyle, H., Ed.; Van Nostrand Reinhold Company Inc: New York, NY, USA, 1983; Volume 3, pp. 22–46. [Google Scholar]
- Bannwarth, B. Risk-benefit Assessment of Opioids in Chronic Noncancer Pain. Drug Saf. 1999, 21, 283–296. [Google Scholar] [CrossRef]
- Quang-Cantagrel, N.D.; Wallace, M.S.; Magnuson, S.K. Opioid Substitution to Improve the Effectiveness of Chronic Noncancer Pain Control a Chart Review. Anesth. Analg. 2000, 90, 933–937. [Google Scholar] [CrossRef]
- Collet, B.J. Chronic Opioid Therapy for Non-Cancer Pain. Br. J. Anaesth. 2001, 87, 133–143. [Google Scholar] [CrossRef]
- Pacifici, G.M.; Bencini, C.; Rane, A. Presystemic Glucuronidation of Morphine in Humans and Rhesus Monkeys: Subcellular Distribution of the UDP-Glucuronyltransferase in the Liver and Intestine. Xenobiotica 1986, 16, 123–128. [Google Scholar] [CrossRef]
- Stain-Texier, F.; Sandouk, P.; Scherrann, J.M. Intestinal Absorption and Stability of Morphine 6-Glucuronide in Different Physiological Compartments of the Rat. Drug. Metab. Dispos. 1998, 26, 383–387. [Google Scholar]
- Lee, C.R.; McTavish, D.; Sorkin, E.M. Tramadol. A Preliminary Review of its Pharmacodynamic and Pharmacokinetic Properties, and Therapeutic Potential in Acute and Chronic Pain States. Drugs 1993, 46, 313–340. [Google Scholar] [CrossRef]
- Petropoulos, A.D.; Kouvela, E.C.; Starosta, A. L.; Wilson, D.N.; Dinos, G.P.; Kalpaxis, D.L. Time-Resolved Binding of Azithromycin to Escherichia coli Ribosomes. J. Mol. Biol. 2009, 38, 1179–1192. [Google Scholar]
- Bakar, O.; Demircay, Z.; Yuksel, M.; Haklar, G.; Sanisoglu, Y. The Effect of Azithromycin on Reactive Oxygen Species in Rosacea. Clin. Exper. Derm. 2007, 32, 197–200. [Google Scholar] [CrossRef]
- Culic, O.; Erakovic, V.; Cepelak, I.; Barisic, K.; Brajsa, K.; Ferencic, Z.; Galovic, R.; Glojnaric, I.; Manojlovic, Z.; Munic, V.; Novak-Mircetic, R.; Pavicic-Beljak, V.; Sucic, M.; Veljaca, V.; Zanic-Grubisic, T.; Parnham, M.J. Azithromycin Modulates Neutrophil Function and Circulating Inflammatory Mediators in Healthy Human Subjects. Eur. J. Pharmacol. 2002, 450, 277–289. [Google Scholar] [CrossRef]
- Tsai, W.C.; Rodriguez, M.L.; Young, K.S.; Deng, J.C.; Thannickal, V.J.; Tateda, K.; Hershenson, M.B.; Standiford, T.J. Azithromycin Blocks Neutrophil Recruitment in Pseudomonas Endobronchial Infection. Am. J. Respir. Crit. Care Med. 2004, 170, 1331–1339. [Google Scholar] [CrossRef]
- Parnhama, M.J.; Čulić, O.; Eraković, V.; Munić, V.; Popović-Grle, S.; Barišić, K.; Bosnar, M.; Brajša, K.; Čepelak, I.; Čužić, S.; Glojnarić, I.; Manojlović, Z.; Novak-Mirčetić, R.; Oresković, K.; Pavičić-Beljak, V.; Radošević, S.; Sučić, M. Modulation of Neutrophil and Inflammation Markers in Chronic Obstructive Pulmonary Disease by Short-Term Azithromycin Treatment. Eur. J. Pharm. 2005, 517, 132–143. [Google Scholar] [CrossRef]
- Sitland-Marken, P.A.; Wells, B.G.; Froemming, J.H.; Chu, C.C.; Brown, C.S. Psychiatric Applications of Bromocriptine Therapy. J. Clin. Psychiatry 1990, 51, 68–82. [Google Scholar]
- Schapira, A.H. Neuroprotection in PDA Role for Dopamine Agonists? Neurology 2003, 61, 34–42. [Google Scholar] [CrossRef]
- Yoshikawa, T.; Minamiyama, Y.; Naito, Y.; Kondo, M. Antioxidant Properties of Bromocriptine, a Dopamine Agonist. J. Neurochem. 1994, 62, 1034–1038. [Google Scholar]
- Muralkrishnan, D.; Mohanakumar, K.P. Neuroprotection by Bromocriptine against 1-Methyl-4- Phenyl-1,2,3,6-Tetrahydropyridine-Induced Neurotoxicity in Mice. FASEB J. 1998, 12, 905–912. [Google Scholar]
- Lim, J.H.; Kim, K.M.; Kim, S.W.; Hwang, O.; Choi, H.J. Bromocriptine Activates NQO1 via Nrf2-PI3K/Akt Signaling: Novel Cytoprotective Mechanism against Oxidative Damage. Pharmacol. Res. 2008, 57, 325–331. [Google Scholar] [CrossRef]
- Subramaniam, B.; Rollema, H.; Woolf, T.; Castagnoli, N.G. Identification of a Potentially Neurotoxic Pyridinium Metabolite of Haloperidol in Rats. Biochem. Biophys. Res. Commun. 1990, 166, 238–244. [Google Scholar] [CrossRef]
- Cadet, J.L.; Lohr, J.B. Possible Involvement of Free Radicals in Neuroleptic-Induced Movement Disorders. Ann. NY Acad. Sci. 1989, 570, 176–185. [Google Scholar] [CrossRef]
- Thaakur, S.R.; Jyothi, B. Effect of Spirulina Maxima on the Haloperidol Induced Tardive Dyskinesia and Oxidative Stress in Rats. J. Neural. Transm. 2007, 114, 1217–1225. [Google Scholar] [CrossRef]
- Creese, I.; Burt, D.R.; Synder, S.H. Dopamine Receptor Binding Predicts Clinical and Pharmacological Potencies of Antischizophrenic Drugs. Science 1976, 192, 481–483. [Google Scholar]
- Walker, J.M.; Bowen, W.D.; Walker, F.O.; Matsumoto, R.R.; De Costa, B.; Rice, C.K. Sigma receptors: biology and function. Pharmacol. Rev. 1990, 42, 355–402. [Google Scholar]
- Vilner, B.J.; de Costa, BR; Bowen, W.D. Cytotoxic effects of sigma ligands: Sigma receptor-mediated alterations in cellular morphology and viability. J. Neurosci. 1995, 15, 117–134. [Google Scholar]
- Rietjens, I.M.C.M.; Boersma, M.G.; de Haan, L.; Spenkelink, B.; Awad, H.M.; Cnubben, N.H.P.; van Zanden, J.J.; van der Woude, H.; Alink, G.M. The pro-oxidant chemistry of the natural antioxidants vitamin C, vitamin E, carotenoids and flavonoids. Environ. Toxicol. Pharmacol. 2002, 11, 321–333. [Google Scholar] [CrossRef]
- Yao, J.K.; Reddy, R.; McElhinny, L.G.; van Kammen, D.P. Effects of Haloperidol on Antioxidant Defense System Enzymes in Schizophrenia. J. Phys. Res. 1998, 32, 385–391. [Google Scholar]
- Naidu, P.S.; Singh, A.; Kulkarni, S.K. Quercetin, a Bioflavonoid, Attenuates Haloperidol-Induced Orofacial Dyskinesia. Neuropharmacology 2003, 44, 1100–1106. [Google Scholar] [CrossRef]
- Smirnova, G V.; Zakirova, O.N.; Oktyabrskii, O.N. The Role of Antioxidant Systems in the Cold Stress Response of Escherichia coli. Microbiology 2001, 70, 45–50. [Google Scholar] [CrossRef]
- Yüksel, S.; Asmab, D. Effects of Extended Cold Exposure on Antioxidant Defense System of Rat Hypothalamic–Pituitary–Adrenal Axis. J. Thermal Biol. 2006, 31, 313–317. [Google Scholar] [CrossRef]
- Latyshko, N.; Gudkova, L.; Gudkova, O.; Mykhailovsky, V. Molecular Mechanisms of Catalase Action Under Cold Stress Conditions. Annales Universitatis Mariae Curie–Skłodowska 2006, 19, 159–162. [Google Scholar]
- Popovic, M.; Janicijevic-Hudomal, S.; Kaurinovic, B.; Rasic, J.; Trivic, S. Antioxidant Effects of Some Drugs on Ethanol-Induced Ulcers. Molecules 2009, 14, 816–826. [Google Scholar] [CrossRef]
- Lurie, E.; Soloviova, A.; Alyabieva, T.; Kaplun, A.; Panchenko, L.; Shvets, V. Effect of Novel Aromatic Derivative of GABA on Lipid Peroxidation in Chronically Morphinized Rats. Biochem. Mol. Biol. Int. 1995, 36, 13–19. [Google Scholar]
- Masini, A.; Gallesi, D.; Giovannini, F.; Trenti, T.; Ceccarelli, D. Membrane Potential of Hepatic Mitochondria after Acute Cocaine Administration in Rats—The Role of Mitochondrial Reduced Glutathione. Hepatology 1997, 25, 385–390. [Google Scholar]
- Panchenko, L.F.; Pirozhkov, S.V.; Nadezhdin, A.V.; Baronets, V.I.; Usmanova, N.N. Lipid Peroxidation, Peroxyl Radicalscavenging System of Plasma and Liver and Heart Pathology in Adolescence Heroin Users. Vopr. Med. Khim. 1999, 45, 501–506. [Google Scholar]
- Atici, S.; Cinel, I.; Cinel, L.; Doruk, N.; Eskandari, G.; Oral, U. Liver and Kidney Toxicity in Chronic Use of Opioids: An Experimental Long Term Treatment Model. J. Biosci. 2005, 30, 245–252. [Google Scholar] [CrossRef]
- Zhang, Y.T.; Zheng, Q.S.; Pan, J.; Zheng, R.L. Oxidative Damage of Biomolecules in Mouse Liver Induced by Morphine and Protected by Antioxidants. Basic Clin. Pharmacol. Toxicol. 2004, 95, 53–58. [Google Scholar]
- William, S.; Sekar, N.; Subramanian, S.; Govindasamy, S. Toxic Effect of Morphine and the Antagonistic Role of Naloxone on Isolated Rat Hepatocytes. Biochem. Int. 1991, 23, 1071–1077. [Google Scholar]
- Bosma, H,; Peter, R.; Siegrist, J; Marmot, M. Two alternative job stress models and the risk of coronary heart disease. Am. J. Public Health 1998, 88, 68–74. [Google Scholar] [CrossRef]
- Azam, F. Synthesis of Some Urea and Thiourea Derivatives of Naphtha[1,2-d]Thiazol-2-Amine as Anti-Parkinsonian Agents that Cause Neuroprotection against Haloperidol-Induced Oxidative Stress in Mice. Med. Chem. Res. 2009, 18, 287–308. [Google Scholar] [CrossRef]
- Buege, A.J.; Aust, D.S. Methods in Enzymology; Fleischer, S., Parker, L., Eds.; Academic Press: New York, USA, 1988; p. 306. [Google Scholar]
- Simon, L.M.; Fatrai, Z.; Jonas, D.E.; Matkovics, B. Study of Metabolism Enzymes during the Development of Phaseolus vulgaris. Biochem. Physiol. Plant 1974, 166, 389–393. [Google Scholar]
- Beers, R.F.J.; Sizer, J.W. Spectrophotometric Method for Measuring of Breakdown of Hydrogen Peroxide by Catalase. J. Biol. Chem. 1950, 195, 133–140. [Google Scholar]
- Chin, P.T.Y.; Stults, F.H.; Tappel, A.L. Purification of Rat Lung Soluble Glutathione Peroxidase. Biochem. Biophys. Acta 1976, 445, 558–660. [Google Scholar] [CrossRef]
- Bergmayer, U.H. Methoden Der Enzymatischen Analyse; Verlag Chemie: Weinhem, Germany, 1970. [Google Scholar]
- Glatzle, D.; Vuillenmir, K. Glutathione Reductase Test with Whole Blood a Convenient Procedure for the Assessment of the Riboflavin Status in Human. Experimentia 1974, 30, 565–638. [Google Scholar]
- Kapetanović, I.M.; Mieyal, I.I. Inhibition of Acetaminophen Induced Hepatotoxicity by Phenacetin and Its Alkoxy Analogs. J. Pharmacol. Exp. Ther. 1979, 209, 25–30. [Google Scholar]
- Gornall, H.G.; Nardwall, C.L. Estimation of Total Protein in Tissue Homogenate. J. Biol. Chem. 1949, 177, 751–756. [Google Scholar]
- Sample Availability: Samples of the compounds are not available.
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Popovic, M.; Janicijevic-Hudomal, S.; Kaurinovic, B.; Rasic, J.; Trivic, S.; Vojnović, M. Antioxidant Effects of Some Drugs on Immobilization Stress Combined with Cold Restraint Stress. Molecules 2009, 14, 4505-4516. https://doi.org/10.3390/molecules14114505
Popovic M, Janicijevic-Hudomal S, Kaurinovic B, Rasic J, Trivic S, Vojnović M. Antioxidant Effects of Some Drugs on Immobilization Stress Combined with Cold Restraint Stress. Molecules. 2009; 14(11):4505-4516. https://doi.org/10.3390/molecules14114505
Chicago/Turabian StylePopovic, Mira, Snezana Janicijevic-Hudomal, Biljana Kaurinovic, Julijana Rasic, Svetlana Trivic, and Matilda Vojnović. 2009. "Antioxidant Effects of Some Drugs on Immobilization Stress Combined with Cold Restraint Stress" Molecules 14, no. 11: 4505-4516. https://doi.org/10.3390/molecules14114505
APA StylePopovic, M., Janicijevic-Hudomal, S., Kaurinovic, B., Rasic, J., Trivic, S., & Vojnović, M. (2009). Antioxidant Effects of Some Drugs on Immobilization Stress Combined with Cold Restraint Stress. Molecules, 14(11), 4505-4516. https://doi.org/10.3390/molecules14114505