Chemical Composition, Antifungal and Antitumor Properties of Ether Extracts of Scapania verrucosa Heeg. and its Endophytic Fungus Chaetomium fusiforme
Abstract
:Introduction
Results and Discussion
Chemical components of the plant and the endophyte extracts
Compounds | RIa | Content/% |
---|---|---|
n-dodecane | 1200 | 0.22 |
2-heptenal | 1334 | 0.18 |
3-octanol, acetate | 1344 | 0.19 |
octen-1-ol, acetate | 1385 | 2.84 |
n-tetradecane | 1400 | 0.29 |
acetic acid | 1425 | 5.30 |
aminic acid | 1470 | 0.87 |
s-tetrachloroethane | 1516 | 5.61 |
β-bourbonene | 1528 | 1.83 |
aromadendrene, dehydro- | 1541 | 0.42 |
(-)-aristolene | 1582 | 2.06 |
β-elemen | 1599 | 1.30 |
calarene | 1604 | 5.01 |
cedr-8(15)-ene | 1609 | 1.05 |
1H-cyclopropa[a]naphthalene, decahydro-1,1,3a-trimethyl-7-methylene | 1614 | 2.74 |
9-methyltetracyclo[7.3.1.0(2.7).1(7.11)]tetradecane | 1655 | 4.49 |
(+)-aromadendrene | 1660 | 9.12 |
β-farnesene | 1672 | 0.51 |
acroadiene | 1689 | 0.34 |
n-heptadecane | 1700 | 0.26 |
thujopsene-(12) | 1715 | 0.19 |
eremophila-1(10), 11-diene | 1732 | 0.14 |
c-neoclovene | 1747 | 0.12 |
11-isopropylidenetricyclo[4.3.1.1(2,5)]undec-3-en-10-one | 1784 | 0.09 |
n-octadecane | 1800 | 0.18 |
(E,E)-2,4-decadienal | 1821 | 0.16 |
(+)-cuparene | 1838 | 0.13 |
hexanoic acid | 1851 | 0.15 |
[2,4,4-trimethyl-1-(2-methylpropanoyloxy)pentan-3-yl] 2-methylpropanoate | 1884 | 0.17 |
phytol | 1929 | 1.76 |
cyclohexene, 6-(2-butenyl)-1,5,5-trimethyl-(E)- | 2027 | 0.47 |
ledol | 2095 | 0.19 |
2-(4a,8-dimethyl-1,2,3,4,4a,5,6,7-octahydro-naphthalen-2-yl)-prop-2-en-1-ol | 2124 | 0.67 |
spathulenol | 2135 | 4.74 |
guaia-1(5),11-diene | 2162 | 0.09 |
thujopsene | 2182 | 0.37 |
6-isopropenyl-4,8a-dimethyl-1,2,3,5,6,7,8,8a-octahydro-naphthalen-2-ol | 2241 | 5.97 |
aromadendrene oxide-(2) | 2299 | 1.22 |
cyclohexene, 6-(2-butenylidene)-1,5,5-trimethyl-(Z,E)- | 2323 | 0.47 |
(-)-spathulenol | 2464 | 0.41 |
7-acetyl-2-methyl-5-isopropylbicyclo[4.3.0]nonane | 2524 | 1.61 |
thunbergol | 2538 | 0.65 |
tetradecanoic acid | 2585 | 0.25 |
platambin | 2686 | 2.22 |
hexadecanoic acid | 2756 | 6.92 |
4,8,13-duvatriene-1,3-diol | 2955 | 3.72 |
stearic acid | 3020 | 1.82 |
9-octadecenoic acid (Z)- | 3072 | 1.24 |
linoleic acid | 3170 | 3.92 |
Total identified | 84.64 |
Chaetomium fusiforme | PDBa | ||||
---|---|---|---|---|---|
Compounds | RIb | Content/% | Compounds | RI b | Content/% |
butyl alcohol | 1195 | 1.35 | 2-n-pentylfuran | 1259 | 0.24 |
methyl 2-oxopropionate | 1276 | 0.14 | ethyl pyroracemate | 1303 | 0.15 |
acetoin | 1314 | 1.70 | devoton | 1347 | 0.90 |
1,2-propanediol | 1336 | 0.21 | ethyl vinyl ketone | 1414 | 0.51 |
3-octanol | 1384 | 1.61 | acetic formic anhydride | 1436 | 10.45 |
acetic acid | 1425 | 35.05 | 3-furancarboxaldehyde | 1455 | 1.29 |
2-furancarboxaldehyde | 1443 | 0.28 | aminic acid | 1470 | 2.39 |
aminic acid | 1470 | 0.56 | propionic acid | 1493 | 0.36 |
butane-2,3-diol | 1485 | 11.24 | 2-butyl-1-octanol | 1528 | 0.54 |
dimethylsuccinate | 1526 | 0.61 | 2-cyclopentene-1,4-dione | 1535 | 0.25 |
butyrolactone | 1561 | 0.23 | acrylic acid | 1560 | 0.28 |
acetophenone | 1573 | 0.26 | furfuryl alcohol | 1575 | 2.66 |
4-penten-1-ol,2,2,4-trimethyl- | 1592 | 0.38 | 2-furancarboxylic acid, tetrahydro-3-methyl-5-oxo- | 1581 | 0.67 |
5-hexalactone | 1669 | 5.71 | n-heptanoic acid | 1623 | 0.27 |
valeric acid,3-methyl-,methyl ester | 1677 | 21.25 | 2-ethylcyclohexanone | 1651 | 0.57 |
ethyl 3-hydroxy-2,2-dimethylbutanoate | 1699 | 0.29 | heptadecane,2,6,10,15-tetramethyl- | 1660 | 0.86 |
benzeneethanol | 1734 | 6.17 | n-caproic acid | 1690 | 1.73 |
hydroxymethylfurfurole | 1812 | 1.00 | phenol, p-sec-butyl- | 1701 | 0.44 |
p-cresol | 1835 | 0.25 | 1,2-dimethylpropyl acetate | 1713 | 0.69 |
o-cresol | 1840 | 0.18 | benzenemethanol | 1717 | 0.24 |
methyl vinylcarbinol | 1861 | 0.67 | corylon | 1768 | 0.30 |
benzeneacetic acid | 1878 | 0.26 | maltol | 1777 | 2.47 |
methyl vinylcarbinol | 1892 | 0.56 | methyl 2-furoate | 1808 | 0.86 |
methyl phenylglycalate | 1923 | 0.26 | hydroxymethylfurfurole | 1812 | 20.79 |
monomethyl succinate | 1988 | 2.66 | pyrrole-2-carboxaldehyde | 1814 | 1.26 |
2-furoic acid | 2048 | 0.43 | pantolactone | 1818 | 0.76 |
pyrrolidine-5-one, 2-[3 -hydroxypropyl]- | 2167 | 0.25 | benzeneacetic acid | 1878 | 5.68 |
4-(2-hydroxyethyl)phenol | 2565 | 2.37 | 2-methoxy-4-vinylphenol | 1915 | 0.69 |
total | 95.94 | pyranone | 1962 | 8.35 | |
3,5-dihydroxy-2-methyl-4-pyrone | 1969 | 1.08 | |||
hemineurine | 1980 | 2.62 | |||
3-hydroxypyridine | 2048 | 3.11 | |||
o-aminophenol | 2054 | 2.50 | |||
butanimide | 2081 | 1.96 | |||
hexadecanoic acid | 2476 | 1.05 | |||
niacinamide | 2549 | 2.61 | |||
palmitamide | 2858 | 1.89 | |||
cyclo(leucyloproly) | 2870 | 7.81 | |||
total | 91.27 |
Antifungal activity
IC80(μg/mL) | |||
---|---|---|---|
Test fungi | S. verrucosa | C. fusiforme | KCZa |
Candida albicans ATCC76615 | 32 | 32 | 0.0625 |
Cryptococcus neoformans ATCC32609 | 64 | 32 | 0.0625 |
Trichophyton rubrum | 64 | NDb | 0.25 |
Aspergillus fumigatus | 8 | 32 | 1 |
Pycricularia oryzae | >128 | 128 | 8 |
Antitumor activity
IC50(μg/mL) | |||
---|---|---|---|
Cell line | S.vercossa | C. fusiforme | DOX a |
A549 | >100 | >100 | 0.0207 |
LOVO | >100 | 9.11 | 0.734 |
HL-60 | 42.92 | 4.06 | 0.00190 |
QGY | 90.78 | 31.23 | 0.0110 |
Experimental
Plant Material and Prepare for the extract
Isolation of strains
Fermentation and extraction of the endophytic fungus
Essential oil analysis
Identification of the endophyte
Antifungal activity test
Antitumor activity test
Acknowledgements
References
- Frahm, J.P.; Kirchhoff, K. Antifeeding effects of bryophyte extracts from Neckera crispa and Porella obtusata against slug Arion lusitanicus. Cryptogamie, Bryologie 2002, 23, 271–275. [Google Scholar]
- Asakawa, Y. Biologically active substances found in Hepaticae. In Studies in Natural Products Chemistry; Atta-ur-Rahman, Ed.; Elsevier: Amsterdam, 1988; Vol. 2, pp. 277–292. [Google Scholar]
- Asakawa, Y. Biologically active substances from bryophytes. In Bryophytes Development: Physiology and Biochemistry; Chopra, R.N., Bhatla, S.C., Eds.; CRC Press: Boca Raton, 1990; pp. 259–287. [Google Scholar]
- Asakawa, Y. Terpenoids and aromatic compounds with pharmacological activity from bryophytes. In Bryophytes: Their Chemistry and Chemical Taxonomy; Zinsmeister, H.D., Mues, R., Eds.; Clarendon Press: Oxford, 1990; pp. 369–410. [Google Scholar]
- Asakawa, Y. Chemical constituents of the bryophytes. In Progress in the Chemistry of Organic Natural Products; Herz, W., Kirby, W.B., Moore, R.E., Steglich, W., Tamm, C., Eds.; Springer: Vienna, 1995; Vol. 65, pp. 1–618. [Google Scholar]
- Nagashima, F.; Nondo, M.; Uematsu, T.; Nishiyama, A.; Sato, S.; Sato, M.; Asakawa, Y. Cytotoxic and apoptosis-inducing ent-kaurane-type diterpenoids from the Japanese liverwort Jungermannia truncata Nees. Chem. Pharm. Bull. 2002, 50, 808–813. [Google Scholar] [CrossRef]
- Asakawa, Y. Chemical constituents of the Hepaticae. In Progress in the Chemistry of Organic Natural Products; Herz, W., Grisebach, H., Kirby, G.W., Eds.; Springer: Vienna, 1982; Vol. 42, pp. 1–285. [Google Scholar]
- Asakawa, Y. Phytochemistry of Bryophytes. Biologically Active Terpenoids and Aromatic Compounds from Liverworts. In Phytochemicals in Human Health Protection, Nutrition, and Defense; Romeo, J.T., Ed.; Kluwer Academic/Plenum: New York, 1999; pp. 319–342. [Google Scholar]
- Lars, S.; Ana, S.; Mariana, S. Rarity patterns in members of the Lophoziaceae/Scapaniaceae complex occurring North of the Tropics – Implications for conservation. Biol. Conserv. 2007, 352–359. [Google Scholar]
- Yoshida, T.; Toyota, M.; Asakawa, Y. Scapaundulins A and B, two novel dimeric labdane diterpenoids, and related compounds from the Japanese liverwort Scapania undulata (L) Dum. Tetrahedron Lett. 1997, 38, 1975–1978. [Google Scholar] [CrossRef]
- Adioa, A.M.; Paulb, C.; Klotha, P.; Königa, W.A. Sesquiterpenes of the liverwort Scapania undulata. Phytochemistry 2004, 65, 199–206. [Google Scholar] [CrossRef]
- Nagashima, F.; Asakawa, Y. Sesqui- and diterpenoids from two Japanese and three European liverworts. Phytochemistry 2001, 56, 347–352. [Google Scholar]
- Tazakia, H.; Hayashida, T.; Furuki, T.; Nabeta, K. Terpenoid from the liverwort Scapania bolandeli. Phytochemistry 1999, 52, 1551–1553. [Google Scholar] [CrossRef]
- Geis, W.; Buschauer, B.; Becker, H. cis-Clerodandes from axenic cultures of the liverwort Scapania nemorea. Phytochemistry 1999, 51, 643–649. [Google Scholar] [CrossRef]
- Mues, R.; Huneck, S.; Connolly, J.D.; Rycroft, D.S. capaniapyrone-A, a novel aromatic constituent of the liverwort Scapania undulata. Tetrahedron Lett. 1988, 29, 6793–6796. [Google Scholar] [CrossRef]
- Stone, J.K.; Bacon, C.W.; White, J.F. An Overview of Endophytic Microbes: Endophytism Defined in Microbial Endophytes; Bacon, C.W., White, J.F., Eds.; Marcel Deker: New York, 2000. [Google Scholar]
- Faeth, S.H.; Hammon, K.E. Fungal endophytes in oak trees: long-term patterns of abundance and association with leafminers. Ecology 1997, 78, 810–819. [Google Scholar] [CrossRef]
- Huang, W.Y.; Cai, Y.Z.; Xing, J.; Corke, H.; Sun, M. Potential antioxidant resource: endophytic fungi isolated from traditional Chinese medicinal plants. Econ Bot. 2007, 61, 14–30. [Google Scholar] [CrossRef]
- Fisher, P.J.; Anson, A.E.; Petrini, O. Antibiotic activity of some endophytic fungi from ericaceous plants. Bot. Helv. 1984, 94, 249–253. [Google Scholar]
- Gurney, K.A.; Mantle, P.G. Biosynthesis of 1-N-methylalbonoursin by an endophytic Streptomyces sp. isolated from perennial ryegrass. J. Nat. Prod. (Lloydia) 1993, 56, 1194–1198. [Google Scholar] [CrossRef]
- Stierle, A.; Strobel, G.; Stierle, D. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific Yew. Science 1993, 260, 214–216. [Google Scholar]
- Tan, R.X.; Zou, W.X. Endophytes: a rich source of functional metabolites. Nat. Prod. Rep. 2001, 18, 448–459. [Google Scholar] [CrossRef]
- Hawksworth, D.C.; Rossman, A.Y. Where are the undescribed fungi. Phytopathology 1987, 87, 888–891. [Google Scholar] [CrossRef]
- Nagashima, F.; Suda, K.; Asakawa, Y. Cadinane-type sesquiterpenoids from the liverwort Scapania undulata. Phytochemistry 1994, 37, 1323–1325. [Google Scholar] [CrossRef]
- Asakawa, Y.; Inoue, H.; Toyota, M.; Takemoto, T. Sesqui- terpenoids of fourteen Plagiochila species. Phytochemistry 1980, 19, 2623–2626. [Google Scholar] [CrossRef]
- Ohta, Y.; Andersen, N.H.; Liu, C.B. Sesquiterpene con-stituents of two liverworts of genus Diplophyllum, Novel eudesmanolides and cytotoxicity studies for enantiomeric methylene lactones. Tetrahedron 1977, 33, 617–628. [Google Scholar] [CrossRef]
- Matsuo, A.; Atsumi, K.; Nakayama, M. Isolation of seven verrucosane diterpenoids from the liverwort Scapania bolanderi. Z. Naturforsch. 1984, 39b, 1281–1285. [Google Scholar]
- Asakawa, Y. Chemosystematics of the Hepaticae. Phytochemistry 2004, 65, 623–669. [Google Scholar] [CrossRef]
- Liu, J.Y.; Liu, C.H.; Zou, W.X.; Tan, R.X. Leptosphaeric acid, a metabolite with a novel skeleton from Leptosphaeria sp. IV403, an endophytic fungus in Artemisia annua. Helv. Chim. Acta 2003, 86, 657–660. [Google Scholar] [CrossRef]
- Schulz, B.; Boyle, C.; Draeger, S.; Römmert, A.K.; Krohn, K. Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol. Res. 2002, 106, 996–1004. [Google Scholar]
- Liu, C.H.; Zou, W.X.; Lu, H.; Tan, R.X. Antifungal activity of Artemisia annua endophyte cultures against some phytopathogenic fungi. J. Biotechnol. 2001, 88, 277–283. [Google Scholar] [CrossRef]
- Liu, C.H.; Liu, J.Y.; Huang, L.L.; Zou, W.X.; Tan, R.X. Absolute configuration of keisslone, a new antimicrobial metabolite from Keissleriella sp. YS4108, a marine filamentous fungus. Planta Med. 2003, 69, 481–483. [Google Scholar] [CrossRef]
- Gary, A.S. Endophytes as sources of bioactive products. Microbes Infect. 2003, 5, 535–544. [Google Scholar] [CrossRef]
- Wiyakrutta, S.; Sriubolmas, N.; Panphut, W.; Thongon, N. Endophytic fungi with anti-microbial, anti-cancer and anti-malarial activities isolated from Thai medicinal plants. World J. Microbiol. Biotechnol. 2004, 20, 265–272. [Google Scholar] [CrossRef]
- Gao, Q.; Cao, T. Bryophyta: Hepaticae, Anthocerotae. In Flora Yunnanica; Science Press: Beijing, 2000; Vol. 17, p. 247. [Google Scholar]
- Schulz, B.; Sucker, J.; Aust, H.J.; Krohn, K.; Ludewig, K.; Jones, P.G.; Doring, D. Biologically active secondary metabolites of endophytic Pezicula species. Mycol. Res. 1995, 99, 1007–1015. [Google Scholar] [CrossRef]
- Sample Availability: Available from the authors.
© 2008 by the authors. Licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Guo, L.; Wu, J.-z.; Han, T.; Cao, T.; Rahman, K.; Qin, L.-p. Chemical Composition, Antifungal and Antitumor Properties of Ether Extracts of Scapania verrucosa Heeg. and its Endophytic Fungus Chaetomium fusiforme. Molecules 2008, 13, 2114-2125. https://doi.org/10.3390/molecules13092114
Guo L, Wu J-z, Han T, Cao T, Rahman K, Qin L-p. Chemical Composition, Antifungal and Antitumor Properties of Ether Extracts of Scapania verrucosa Heeg. and its Endophytic Fungus Chaetomium fusiforme. Molecules. 2008; 13(9):2114-2125. https://doi.org/10.3390/molecules13092114
Chicago/Turabian StyleGuo, Lei, Jin-zhong Wu, Ting Han, Tong Cao, Khalid Rahman, and Lu-ping Qin. 2008. "Chemical Composition, Antifungal and Antitumor Properties of Ether Extracts of Scapania verrucosa Heeg. and its Endophytic Fungus Chaetomium fusiforme" Molecules 13, no. 9: 2114-2125. https://doi.org/10.3390/molecules13092114