Syntheses of Calix[4]Pyrroles by Amberlyst-15 Catalyzed Cyclocondensations of Pyrrole with Selected Ketones
Abstract
:Introduction
Results and Discussion
Entry | Solvent | Isolated yield of 3a (%) | Isolated yield of 4a (%) |
---|---|---|---|
2 | CHCl3 | 65 | 8.6 |
3 | C6H6 | 40 | - |
4 | EtOAc | 43 | - |
5 | THF | 60 | - |
6 | DMF | 33 | - |
7 | Toluene | 41 | - |
8 | DCM | 83, 77, 69 b , (70.3 [36]) | 14, 10, 5.8 b (0 [36]) |
Entry | 2 | Catalysta | Time (h) | % Conversion of pyrrole | % yieldb/mp °C (lit. mp °C, [ref.]) | |
---|---|---|---|---|---|---|
3 | 4 | |||||
2 | 2a | Amberlite-IR-120 | 12 | 65.6 | 61.3/295 (296 [27]) | 3.7/185 (184 -185 [41]) |
3 | 2b | Amberlyst™-15 | 10 | 87.0 | 78.0/144 (146 [42]) | 9.0/121 |
4 | 2c | Amberlyst™-15 | 48 (32)c | 72.0 | 68.3 (71.1)c/222 (–) | – |
5 | 2d | Amberlyst™-15 | 8 | 96.7 | 79.7 /235 (236 [42]) | 13.5 /198 |
6 | 2e | Amberlyst™-15 | 8 | 98.5 | 83.5 (53.0 [43])/273 (271-272 [43]) | 11.3 (5.0 [43])/224 (223.2-223.6 [43]) |
7 | 2f | Amberlyst™-15 | 60 (55)c | 33.0 | 30.2 (46.0)c/163 (–) | – |
8 | 2g | Amberlyst™-15 | 72 (64)c | 24.9 | 19.7 (40.0)c/223 (–) | – |
Product Characterization
Conclusions
Calix. | 1H-NMR spectra (298 K, δ = ppm)a | HRMS (ESI-MS)b |
---|---|---|
3a | 7.01 (4H, br s, NH), 5.89 (8H, d, J=2.5 Hz, β-pyrrole), 1.50 (24 H, s) | C28H36N4 [M-H]- : calcd : 427.2862, found : 427.2860. |
3b | 6.97 (4H, br s, NH), 5.80 (8H, d, J=2.5 Hz, β-pyrrole), 1.79-1.76 (8H, q, -CH2-), 1.45-1.18 (12H, br s, CH3), 0.80-0.63 (12 H, t, CH3-) | C32H44N4 [M-H]- : calcd : 483.3487, found : 483.3480. |
3c | 7.05 (4H, br s, NH), 5.89 (8H, d, J=2.3 Hz, β-pyrrole), 1.79-1.57 (16H, q, -CH2-), 0.71-0.58 (24 H, t, CH3-) | C36H52N4 [M-H]- ; calcd : 539.4113, found : 539.4120. |
3d | 7.03 (4H, br s, NH), 5.85 (8H, d, J=2.3 Hz, β-pyrrole), 2.21-2.00 (16H, m), 1.68-1.44 (16H, m) | C36H44N4 [M-H]- : calcd : 531.3488, found : 531.3486. |
3e | 7.25 (4H, br s, NH), 5.89 (8H, d, J=2.5 Hz, β-pyrrole), 1.91-1.90 (16H, m), 1.50-1.41 (24H, m), | C40H52N4 [M-H]- : calcd : 587.4114, found : 587.4112. |
3f | 6.88 (4H, br s, NH), 5.83 (8H, d, J=2.5 Hz, β-pyrrole), 2.01-1.94 (16H, m), 1.72-1.52 (32H, m) | C44H60N4 [M-H]- Calcd: 643.4817, Found: 643.4810. |
3g | 6.99 (4H, br s, NH), 5.93 (8H, d, J=2.4 Hz, β-pyrrole), 1.97-1.95 (16H, m), 1.52-1.34 (32H, m), 1.23-1.21 (8H, m) | C48H68N4 [M-H]- calcd : 699.5443, Found : 699.5456. |
Calix. | 1H-NMR spectra (298 K, δ = ppm) | HRMS (ESI-MS) |
---|---|---|
4a | NH: 7.75 (1H, br), 7.41 (1H, br), 7.26 (2H, br); α-pyrrole: 6.30 (1H, d, J= 2 Hz), β-pyrrole: 6.04 (2H, br), 5.97 (2H, br), 5.93 (2H, m), 5.50 (1H, br); 1.56-1.48 (24H, m) a | C28H36N4 [M-H]- : calcd : 427.2862, found : 427.2868 |
4b | NH: 7.63 (1H, br), 7.53 (1H, br), 7.35 (2H, br); α-pyrrole: 6.40 (1H, d, J= 2 Hz) ; β-pyrrole: 6.03 (2H, br), 5.88 (2H, br), 5.78 (2H, m), 5.53 (1H, br); 1.92 (3H, s, -CH3), 1.83-1.12 (29H, m) | C32H44N4 [M-H]- : calcd : 483.3487, found : 483.3482. |
4d | NH: 7.48 (1H, br), 7.29 (1H, br), 7.00 (2H, br); α-pyrrole: 6.42 (1H, d, J=1.97 Hz); β-pyrrole: 6.00 (2H, br), 5.90 (2H, br), 5.88 (2H, m), 5.58 (1H, br); 2.25-1.98 (16H, m), 1.50-1.20 (16H, m) | C36H44N4 [M-H]- : calcd : 531.3488, found : 531.3480. |
4e | NH: 7.63 (1H, br), 7.44 (1H, br), 7.10 (2H, br); α-pyrrole: 6.42 (1H, d, J= 1.98 Hz); β-pyrrole: 6.03 (2H, br), 5.97 (2H, br), 5.82 (2H, m), 5.50 (1H, br); 2.70-2.10 (16H, m), 1.60-1.20 (24H, m)a | C40H52N4 [M-H]- : calcd : 587.4114, found : 587.4110. |
Experimental
General
Representative experimental procedure for the preparation of calix[4]pyrroles 3a-g and N-confused calix[4]pyrroles 4a-g: synthesis of meso-octamethylcalix[4]pyrrole (3a) and N-confused octamethyl calix[4]-pyrrole (4a)
Acknowledgments
References
- Gale, P. A.; Sessler, J. L.; Král, V. Calixpyrroles. Chem. Commun. 1998, 1–8. [Google Scholar] [CrossRef]
- Suksai, C.; Tuntulani, T. Chromogenic anion sensors. Chem. Soc. Rev. 2003, 32, 192–202. [Google Scholar]
- Stibor, I.; Zlatuskova, P. Chiral recognition of anions. Top. Curr. Chem. 2005, 255, 31–63. [Google Scholar]
- Gale, P. A.; Quesada, R. Anion coordination and templated assembly: highlights from 2002-2004. Coord. Chem. Rev. 2006, 250, 3219–3244. [Google Scholar]
- Gale, P. A. Structural and molecular recognition studies with acyclic anion receptors. Acc. Chem. Res. 2006, 39, 465–475. [Google Scholar] [CrossRef] [PubMed]
- Gale, P. A. Anion and ion-pair receptor chemistry: highlights from 2000 and 2001. Coord. Chem. Rev. 2003, 240, 191–221. [Google Scholar] [CrossRef]
- Sessler, J. L.; Camiolo, S.; Gale, P. A. Pyrrolic and polypyrrolic anion binding agents. Coord. Chem. Rev. 2003, 240, 17–55. [Google Scholar] [CrossRef]
- Gale, P. A.; Sessler, J. L.; Král, V.; Lynch, V. Calix[4]pyrroles: Old yet new anion-binding agents. J. Am. Chem. Soc. 1996, 118, 5140–5141. [Google Scholar] [CrossRef]
- Allen, W. E.; Gale, P. A.; Brown, C. T.; Lynch, V. M.; Sessler, J. L. Binding of neutral substrates by Calix[4]pyrroles. J. Am. Chem. Soc. 1996, 118, 12471–12472. [Google Scholar] [CrossRef]
- Bachmann, J.; Nocera, D. G. Multielectron redox chemistry of iron porphyrinogens. J. Am. Chem. Soc. 2005, 127, 4730–4743. [Google Scholar] [CrossRef]
- Miyaji, H.; Anzenbacher, P.; Sessler, J. L.; Bleasdale, E. R.; Gale, P. A. Anthracene-linked calix[4]pyrroles: fluorescent chemosensors for anions. Chem. Commun. 1999, 1723–1724. [Google Scholar]
- Gale, P. A.; Twyman, L. J.; Handlin, C. I.; Sessler, J. L. A colourimetric calix[4]pyrrole–4-nitrophenolate based anion sensor. Chem. Commun. 1999, 1851–1852. [Google Scholar]
- Gale, P. A.; Hursthouse, M. B.; Light, M. E.; Sessler, J. L.; Warriner, C. N.; Zimmerman, R. S. Ferrocene-substituted calix[4]pyrrole: a new electrochemical sensor for anions involving CH...anion hydrogen bonds. Tetrahedron Lett. 2001, 42, 6759–6762. [Google Scholar] [CrossRef]
- Král, V.; Gale, P. A.; Anzenbacher, P., Jr.; Jursíková, K.; Lynch, V.; Sessler, J. L.; Anzenbacher, P., Jr. Calix[4]pyridine: a new arrival in the heterocalixarene family. Chem. Commun. 1998, 9–10. [Google Scholar]
- He, L. J.; Cai, Q. S.; Shao, S. J.; Jiang, S. X. Effect of calix[4]pyrrole as addition reagent on anion separation in capillary zone electrophoresis (CZE). Chin. Chem. Lett. 2001, 12, 511–512. [Google Scholar]
- Conoci, S.; Palumbo, M.; Pignataro, B.; Rella, R.; Valli, L.; Vasapollo, G. Optical recognition of organic vapors through ultra thin calix[4]pyrrole films. Colloid. Surf. A: Physicochem. Eng. Asp. 2002, 198-200, 869–873. [Google Scholar]
- Sessler, J. L.; Allen, W. E. Anion carriers: New tools for crossing membranes. Chemtech 1999, 29, 16–24. [Google Scholar]
- Floriani, C. The porphyrinogen-porphyrin relationship: the discovery of artificial porphyrins. Chem. Commun. 1996, 1257–1263. [Google Scholar] [CrossRef]
- Battersby, A. R.; Leeper, F. J. Biosynthesis of the pigments of life: mechanistic studies on the conversion of porphobilinogen to uroporphyrinogen III. Chem. Rev. 1990, 90, 1261–1274. [Google Scholar] [CrossRef]
- Chauhan, S. M. S.; Singh, R.; Gulati, A. Clay catalyzed synthesis of 5,10,15,20-tetrakis-(2,6-dichlorophenyl)porphyrin and related compounds. Ind. J. Heterocycl. Chem. 2000, 9, 231–232. [Google Scholar]
- Chauhan, S. M. S.; Sahoo, B. B.; Sriniwas, K. A. Microwave assisted synthesis of 5,10,15,20-tetraarylporphyrins. Synth. Commun. 2001, 31, 33–37. [Google Scholar] [CrossRef]
- Ghosh, A. A perspective of one pot pyrrole-aldehyde condensation as versatile self-assembly processes. Angew. Chem. Int. Ed. 2004, 43, 1918–1931. [Google Scholar] [CrossRef]
- Maeda, H.; Furuta, H. A dozen years of N-confused: from synthesis to supramolecular chemistry. Pure Appl. Chem. 2006, 78, 29–44. [Google Scholar]
- Geier, G. R.; Haynes, D. M.; Lindsey, J. S. An efficient one-flask synthesis of N-confused tetraphenylporphyrin. Org. Lett. 1999, 1, 1455–1458. [Google Scholar] [CrossRef] [PubMed]
- Chandrashekar, T. K.; Venkatraman, S. Core-modified expanded porphyrins: new generation organic materials. Acc. Chem. Res. 2003, 36, 676–691. [Google Scholar] [CrossRef] [PubMed]
- Baeyer, A. Ueber ein condensation product von Pyrrol mit Aceton. Ber. Dtsch. Chem. Ges. 1886, 19, 2184–2185. [Google Scholar] [CrossRef]
- Rothenmund, P.; Gage, C. L. Concerning the structure of acetonepyrrole. J. Am. Chem. Soc. 1955, 77, 3340–3341. [Google Scholar] [CrossRef]
- Depraetere, S.; Smet, M.; Dehaen, W. N-confused calix[4]pyrroles. Angew. Chem. Int. Ed. 1999, 38, 3359–3361. [Google Scholar] [CrossRef]
- Shao, S.; Wang, A.; Yang, M.; Jiang, S.; Xianda, Yu. Synthesis of meso-aryl-substituted calix[4]pyrroles. Synth. Commun. 2001, 31, 1421–1426. [Google Scholar]
- Chen, Q.; Wang, T.; Zhang, Y.; Wang, Q.; Ma, J. Doubly n-confused calix[4]pyrrole prepared by rational synthesis. Synth. Commun. 2002, 32, 1051–1058. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, D.; Sessler, J. L. Conformational features and anion binding properties of calix[4]pyrroles: A theoretical study. J. Org. Chem. 2001, 66, 3739–3746. [Google Scholar] [CrossRef] [PubMed]
- Anzenbacher, P., Jr.; Jursíková, K.; Lynch, V. M.; Gale, P. A.; Sessler, J. L. Calix[4]pyrroles containing deep cavities and fixed walls. Synthesis, structural studies, and anion binding properties of the isomeric products derived from the condensation of p-hydroxyacetophenone and Pyrrole. J. Am. Chem. Soc. 1999, 121, 11020–11021. [Google Scholar]
- Camiolo, S.; Gale, P. A. Fluoride recognition in super-extended cavity calix[4]pyrroles. Chem. Commun. 2000, 1129–1130. [Google Scholar]
- Miyaji, H.; Hong, S.; Jeong, D.; Yoon, D.; Na, H.; Hong, J.; Ham, S.; Sesseler, J. L.; Lee, C. A binol-strapped Calix[4]pyrrole as a model chirogenic receptor for the enantioselective recognition of carboxylate anions. Angew.Chem.Int.Ed. 2007, 46, 2508–2511. [Google Scholar] [CrossRef]
- Jeong, S.; Yoo, J.; Na, H.; Chi, D.; Lee, C. Strapped-calix[4]pyrroles bearing acridine moiety. Supramolecular Chemistry 2007, 19, 271–275. [Google Scholar] [CrossRef]
- Radha Kishan, M.; Srinivas, N.; Raghavan, K. V.; Kulkarni, S. J.; Sarma, J. A. R. P.; Vairamani, M. A novel, shape-selective, zeolite-catalyzed synthesis of calix[4]pyrroles. Chem. Commun. 2001, 2226–2227. [Google Scholar]
- Radha Kishan, M.; Radha Rani, V.; Murty, M.R.V.S.; Sita Devi, P.; Kulkarni, S. J.; Raghavan, K.V. Synthesis of calixpyrroles and porphyrins over molecular sieve catalysts. J. Mol. Cat. A. 2004, 223, 263–267. [Google Scholar]
- Harmer, M.A. Industrial processes using solid acid catalysts. In Handbook of Green Chemistry and Technology; Clark, J. H., Macquarris, D. J., Eds.; Blackwell Publishers: London, 2002; pp. 86–117. [Google Scholar]
- Naik, R.; Joshi, P.; Kaiwar, S. P.; Deshpande, R. K. Facile synthesis of meso-substituted dipyrromethanes and porphyrins using cation exchange resins. Tetrahedron 2003, 59, 2207–2213. [Google Scholar]
- Kumari, P. Synthesis of metallocorroles and their use in the oxidation of selected hydrocarbons. Ph.D. Thesis, University of Delhi, 2007; pp. 55–104. [Google Scholar]
- Nishibayu, R.; Palacios, M. A.; Dehaen, W.; Anzenbacher, P., Jr. Synthesis, structure, anion binding and sensing by calix[4]pyrrole isomers. J. Am. Chem. Soc. 2006, 128, 11496–11504. [Google Scholar] [CrossRef] [PubMed]
- Dey, S.; Pal, K.; Sarkar, S. An efficient and eco-friendly protocol to synthesize calix[4]pyrroles. Tetrahedron Lett. 2006, 47, 5851–5854. [Google Scholar] [CrossRef]
- Anzenbacher, P., Jr.; Nishibayu, R.; Palacios, M. A. N-confused calix[4]pyrrole. Coord. Chem. Rev. 2006, 250, 2929–2938. [Google Scholar]
- Bhaskar, G.; Prabhakar, S.; Ramanjaneyulu, G. S.; Vairamani, M.; Srinivasu, V. N. V.; Srinivas, K. Mass spectral studies of meso-dialkyl, alkyl aryl and cycloalkyl calix[4]pyrroles under positive and negative ion electrospray ionization conditions. J. Mass Spectrom. 2007, 42, 1194–1206. [Google Scholar] [CrossRef] [PubMed]
- Sample Availability: Limited samples of compounds 3a and 3e are available from the corresponding author.
© 2007 by MDPI (http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.
Share and Cite
Chauhan, S.M.S.; Garg, B.; Bisht, T. Syntheses of Calix[4]Pyrroles by Amberlyst-15 Catalyzed Cyclocondensations of Pyrrole with Selected Ketones. Molecules 2007, 12, 2458-2466. https://doi.org/10.3390/12112458
Chauhan SMS, Garg B, Bisht T. Syntheses of Calix[4]Pyrroles by Amberlyst-15 Catalyzed Cyclocondensations of Pyrrole with Selected Ketones. Molecules. 2007; 12(11):2458-2466. https://doi.org/10.3390/12112458
Chicago/Turabian StyleChauhan, Shive Murat Singh, Bhaskar Garg, and Tanuja Bisht. 2007. "Syntheses of Calix[4]Pyrroles by Amberlyst-15 Catalyzed Cyclocondensations of Pyrrole with Selected Ketones" Molecules 12, no. 11: 2458-2466. https://doi.org/10.3390/12112458
APA StyleChauhan, S. M. S., Garg, B., & Bisht, T. (2007). Syntheses of Calix[4]Pyrroles by Amberlyst-15 Catalyzed Cyclocondensations of Pyrrole with Selected Ketones. Molecules, 12(11), 2458-2466. https://doi.org/10.3390/12112458