Next Article in Journal
Bioreversible Derivatives of Phenol. 1. The Role of Human Serum Albumin as Related to the Stability and Binding Properties of Carbonate Esters with Fatty Acid-like Structures in Aqueous Solution and Biological Media
Previous Article in Journal
Synthesis, Chemical Characterization and Biological Screening for Cytotoxicity and Antitumor Activity of Organotin (IV) Derivatives of 3,4-Methylenedioxy 6-nitrophenylpropenoic Acid

Molecules 2007, 12(10), 2364-2379;

Full Paper
Synthesis of Novel N-(4-Ethoxyphenyl) Azetidin-2-ones and Their Oxidative N-Deprotection by Ceric Ammonium Nitrate
Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran
Author to whom correspondence should be addressed.
Received: 20 June 2007; in revised form: 26 August 2007 / Accepted: 26 August 2007 / Published: 25 October 2007


It is shown that the N-(p-ethoxyphenyl) group on β-lactams can be oxidatively removed by ceric ammonium nitrate in good yield. Fourteen new N-(p-ethoxyphenyl)-2-azetidinones 8a-n were synthesized through standard [2+2] ketene-imine cycloadditions (Staudinger reaction). Treatment of these compounds with ceric ammonium nitrate yielded the N-dearylated 2-azetidinones 9a-n in good to excellent yields. The effects of solvent, molar equiv of CAN and different temperatures have been investigated and optimum conditions were established.
2-Azetidinones; N-insubstituted β-Lactam; ceric ammonium nitrate; Staudinger reaction; p-ethoxyphenyl (PEP) group.


Protection of the amide-NH is an area of protective group chemistry that has received little attention, and as a consequence, few good methods exist for amide-NH protection [1]. β-Lactam antibiotics can be synthesized by various routes, but the preparation of N-unsubstituted (NH) β-lactams is a common feature [2]. N-Unsubstituted β-lactams play a central role as key intermediates in the synthesis of several biologically active antibiotics [3]. The importance of these types of compounds for the semi-synthesis of the novel anticancer agents Taxol and Taxotere is also well documented [4]. Benzyl [5], allyl [6], silyl [7], p-methoxyphenyl [8], 4-methoxybenzyl [9], (a-thiophenyl)benzyl [10], 4-(methoxymethoxy)phenyl [11], 2,4-dimethoxybenzyl [12], 3,4-dimethoxybenzyl [13], benzyloxy-aniline linker [14], Rink resin [15], methyl-p-tolyl-amine [16] and pyrrolidinomethyl [17] groups are often used for N1-protection of β-lactams and can be deprotected using different methods to give N-unsubstituted β-lactams. With few exceptions the yields are poor. Furthermore, some methods require expensive or hard to find starting materials. Toxic and unsafe byproducts which are obtained in some cases and difficulties in the purification of the main products are other common problems. Among these methods, oxidative cleavage by ceric ammonium nitrate of a p-methoxyphenyl moiety attached to the β-lactam ring nitrogen offers the most direct synthesis of N-unsubstituted β-lactams [18]. This reaction involves oxidation of the aromatic ring to benzoquinone with the release of 1 mole equiv of MeOH and 1 mole equiv of product amide [19]. In this paper, we report the utility of the p-ethoxyphenyl (PEP) group as a new protecting group for the protection of N1-2-azetidinones. The oxidative removal of this group by ceric ammonium nitrate (CAN) to yield N-unsubstituted β-lactams is also reported.

Results and Discussion

To test the feasibility of using the p-ethoxyphenyl (PEP) group, we first examined separately the reactions of hydroquinone diethyl ether (5) and p-ethoxyaniline (p-phenetidine, 6) with CAN. Thus, compounds 5 and 6 were oxidatively transformed into p-benzoquinone at room temperature in 66% and 43% yield, respectively (Scheme 1).
Scheme 1. Reaction of hydroquinone diethyl ether 5 and p-ethoxyaniline 6 with CAN.
Scheme 1. Reaction of hydroquinone diethyl ether 5 and p-ethoxyaniline 6 with CAN.
Molecules 12 02364 g001
For our subsequent studies the starting Schiff bases 7a-f were readily obtained in excellent yields by stirring a mixture of p-phenetidine and the corresponding aldehydes in refluxing ethanol. Cycloaddition reactions of imines 7a-f with phthalimidioacetyl chloride and phenoxyacetyl chloride in the presence of triethylamine (Method A) or of imines 7a-b with 2-naphthoxyacetic acid, 2,4-dichloro-phenoxyacetic acid and methoxyacetic acid in the presence of p-toluenesulfonyl chloride and triethylamine (Method B) gave cis/trans 2-azetidinones 8a-k and 8l-n, respectively, in good to excellent yields (Scheme 2, Table 1). The mechanism of the ketene-imine cycloaddition reaction involves initial nucleophilic attack of the imine nitrogen on the ketene carbonyl to form a zwitterionic intermediate, which cyclizes to form the β-lactam [21].
The FT-IR spectra of 2-azetidinones 8a-n displayed the β-lactam carbonyl at 1743.5-1786.6 cm-1. The indicated stereochemistry of 2-azetidinones 8a-n was deduced from the coupling constant of H-3 and H-4, which was calculated to be J3,4= 4.2-4-8 Hz for the cis and J3,4= 2.5 Hz for the trans stereoisomers. The 13C-NMR showed the characteristic lactam carbonyl signal at 161.26-167.78 ppm.
Scheme 2. Synthesis of monocyclic 2-azetidinones 8a-n.
Scheme 2. Synthesis of monocyclic 2-azetidinones 8a-n.
Molecules 12 02364 g002
The phthalimido-2-azetidinones 8a-e showed the C-3 signals at 63.03-63.68 and the C-4 signals at 61.03-62.68 ppm, whereas the alkoxy-2-azetidinones 8f-n showed the corresponding signals at 81.09-84.74 and 63.59-63.23 ppm, respectively. Other spectroscopic and analytical data were consistent with the indicated structures.
Table 1. N-(p-Ethoxyphenyl)-2-azetidinones 8a-n.
Table 1. N-(p-Ethoxyphenyl)-2-azetidinones 8a-n.
EntrySchiff baseProductMethodR1R2cis/transYield %
According to the reported procedure for N-dearylation of similar 2-azetidinones [8a], β-lactams 8a-n were treated with ceric ammonium nitrate (3 eq.) in aqueous acetonitrile at 0oC for one hour (Scheme 3) to give NH-β-lactams 9a-n.
Scheme 3. N-Dearylation of 2-azetidinones 8a-n with 3 eq CAN at 0oC.
Scheme 3. N-Dearylation of 2-azetidinones 8a-n with 3 eq CAN at 0oC.
Molecules 12 02364 g003
Next we decided to find the optimum condition for N-dearylation of the above 2-azetidinones. First, N-(p-ethoxyphenyl)-β-lactams 8a-n were treated by CAN (3 eq.) in two different solvents (MeCN and THF) at 0°C for the times mentioned in Table 2. As shown in Table 2, acetonitrile was a better solvent than THF. Although the solubility of some substrates (especially 3-phthalimido-2-azetidinones 8a-e) was not good, the yield was better. The optimum time for these reactions was 30 min, as seen from the table.
Table 2. Reaction of N-(p-ethoxyphenyl)-2-azetidinones 8a-n with 3 eq. CAN at 0°C.
Table 2. Reaction of N-(p-ethoxyphenyl)-2-azetidinones 8a-n with 3 eq. CAN at 0°C.
EntrySubstrateProductIsolated yield (%) in CH3CN/H2O (3:1)Isolated yield (%) in THF/H2O (2:1)
15 min30 min1 hr15 min30 min1 hr
TLC of the reaction mixtures confirmed the presence of p-benzoquinone, which was easily eliminated by forming the corresponding bisulfite adduct that could be washed out with water after workup with aqueous NaHSO3 solution. Removal of the p-ethoxyphenyl (PEP) residue generally resulted in a shift at the β-lactam carbonyl function to a higher field and the appearance of NH peaks in the IR spectra (see the Experimental section). The formation of NH-β-lactams 9a-n was also confirmed by mass spectra and elemental analyses. The 1H-NMR spectra exhibited the NH signals at about 8.41-9.19 ppm as a broad peak in DMSO-d6, which was eliminated by shaking vigorously with D2O.
The mechanism of CAN deprotection of the p-ethoxyphenyl group from amides has not been fully studied. However experiments on the oxidation of 1,4-dimethoxybenzenes (similar to 1,4-diethoxy benzenes) to the corresponding quinones have shown that cleavage of the aryl-oxygen bonds requires two eq. of CAN [20]. Thus, it is found that at least two mol equiv of CAN are needed for the oxidation of N-(4-ethoxyphenyl)-2-azetidinones 8a-n to N-unsubstituted-2-azetidinones 9a-n. According to Table 3, it is shown that 2.8 mol eq. of CAN is sufficient for completing the oxidative N-dearylation of N-(4-ethoxyphenyl)-2-azetidinones 8a-n (except for 8e). Deprotection of compound 8e needed three eq. of CAN to complete conversion to 9e in 82% yield.
Table 3. Deprotection of 2-azetidinones 8a-n by different molar of CAN in MeCN/H2O (3/1) at 0oC.
Table 3. Deprotection of 2-azetidinones 8a-n by different molar of CAN in MeCN/H2O (3/1) at 0oC.
EntrySubstrateProductIsolated yield (%) per molar equiv of CAN
The effect of different temperatures on this oxidation was studied next. 2-Azetidinones 8a-n were treated separately with CAN for 30 min in aqueous acetonitrile at -10°C, 0°C and room temperature (RT). As shown in Table 4, nearly identical yields of NH-β-lactams 9a-n were obtained at 0°C and RT. The lower yield of N-unsubstituted β-lactams in aqueous acetonitrile at -10oC may be attributed to the low solubility of 2-azetidinones 8a-n at that temperature.
According to a reported mechanism for the cleavage of p-methoxyphenyl group [21], following mechanism shown in Scheme 4 is suggested for the oxidative cleavage of p-ethoxyphenyl moiety.
Table 4. Deprotection of β-lactams 8a-n by 2.8 molar eq. of CAN for 30 min at different temperatures.
Table 4. Deprotection of β-lactams 8a-n by 2.8 molar eq. of CAN for 30 min at different temperatures.
EntrySubstrateProductIsolated yield (%) at low temperatures
- 10 oC0 oCRT
Scheme 4.  
Scheme 4.  
Molecules 12 02364 g004


In conclusion, in this study it was shown that the p-ethoxyphenyl group can be introduced onto the 2-azetidinone skeleton as a suitable N-protective group. Furthermore it can easily be removed by CAN under mild conditions. It should be noted that the R1 and R2 substitution on the β-lactam ring and the stereochemistry of the ring remain intact during the course of reaction. In addition to good to excellent yields of the products, ethanol is formed in this oxidation reaction, which is a less toxic and friendlier byproduct for the environment than methanol. It is noteworthy that this oxidative cleavage is rapid and can be performed at room temperature.



All required chemicals were purchased from the Merck or Fluka chemical companies. Dichloromethane and triethylamine were dried by distillation over CaH2 and then stored over 4Å molecular sieves. IR spectra were run on a Shimadzu FT-IR 8300 spectrophotometer. 1H- and 13C- NMR spectra were recorded in DMSO-d6 or CDCl3 using a Bruker Avance DPX instrument (1H-NMR at 250 MHz, 13C-NMR at 62.9 MHz, respectively). Chemical shifts are reported in ppm (δ) downfield from TMS. All the coupling constants (J) are given in Hertz. The mass spectra were recorded on a Shimadzu GC-MS QP 1000 EX instrument. Elemental analyses were run on a Thermo Finnigan Flash EA-1112 series. Melting points were determined in open capillaries with a Buchi 510 melting point apparatus and are not corrected. Thin-layer chromatography was carried out on silica gel 254 analytical sheets obtained from Fluka. Column chromatography was performed on Merck Kieselguhr (230-270 mesh).

General procedurefor synthesis of Schiff bases 7a-f.

A mixture of p-ethoxyaniline (20.0 mmol) and corresponding aldehyde (20.0 mmol) was refluxed in EtOH for 2-4 hours. After cooling the solutions, the precipitate formed was filtered off and washed with ethanol to give pure Schiff bases 7a-f as colored solid or crystals in excellent yields.
(4-Nitrobenzylidene)-(4-ethoxyphenyl)amine (7a). Brown solid (from p-phenetidine and 4-nitro-benzaldehyde); yield 97 %; m.p. 124-126 oC; IR (KBr) (cm-1) 1620.1 (C=N); 1H-NMR (CDCl3) δ 1.33 (Me, t, 3H), 3.88 (OCH2, q, 2H), 6.81-8.18 (ArH, m, 8H), 8.44 (HC=N, s, 1H); 13C-NMR (CDCl3) δ 14.82 (Me), 63.73 (OCH2), 115.05-154.52 (aromatic carbons), 158.66 (C=N); GC-MS m/z = 270 [M+]; Anal. calcd. for C15H14N2O3: C, 66.66; H, 5.22; N, 10.36. Found: C, 66.62; H, 5.39; N, 10.32.
(4-Chlorobenzylidene)-(4-ethoxyphenyl)amine (7b). Milky-coloured solid (from p-phenetidine and 4-chlorobenzaldehyde); yield 94 %; m.p. 92-94 °C; IR (KBr) (cm-1) 1620.1 (C=N);1H-NMR (CDCl3) δ 1.43 (Me, t, 3H), 4.00 (OCH2, q, 2H), 6.87-7.80 (ArH, m, 8H), 8.39 (HC=N, s, 1H); 13C-NMR (CDCl3) δ 14.84 (Me), 63.63 (OCH2), 114.94-156.43 (aromatic carbons), 157.85 (C=N); GC-MS m/z = 261 [M+, 37Cl], 259 [M+, 35Cl]; Anal. calcd. for C15H14ClNO: C, 69.36; H, 5.43; N, 5.39. Found: C, 69.29; H, 5.49; N, 5.44.
(4-Methoxybenzylidene)-(4-ethoxyphenyl)amine (7c). Milky-colour solid (from p-phenetidine and 4-methoxybenzaldehyde); yield 95 %; m.p. 128-130°C; IR (KBr) (cm-1) 1612.4 (C=N); 1H-NMR (CDCl3) δ 1.41 (Me, t, 3H), 3.86 (OMe, s, 3H), 4.03 (OCH2, q, 2H), 6.88-7.83 (ArH, m, 8H), 8.39 (HC=N, s, 1H); 13C-NMR (CDCl3) δ 14.88 (Me), 55.37 (OMe), 63.64 (OCH2), 114.12-157.73 (aromatic carbons), 161.95 (C=N); GC-MS m/z = 255 [M+]; Anal. calcd. for C16H17NO2: C, 75.27; H, 6.71; N, 5.49. Found: C, 75.17; H, 6.80; N, 5.45.
(4-Methylbenzylidene)-(4-ethoxyphenyl)amine (7d). Yellow solid (from p-phenetidine and 4-methyl-benzaldehyde); yield 93 %; m.p. 87-89 °C; IR (KBr) (cm-1) 1609.8 (C=N); 1H-NMR (CDCl3) δ 1.31 (Me, t, 3H), 2.36 (Me, s, 3H), 4.00 (OCH2, q, 2H), 6.85-7.76 (ArH, m, 8H), 8.39 (HC=N, s, 1H); 13C-NMR (CDCl3) δ 14.84, 21.54 (2Me), 63.57 (OCH2), 114.87-157.48 (aromatic carbons), 158.16 (C=N); GC-MS m/z = 239 [M+]; Anal. calcd. for C16H17NO: C, 80.30; H, 7.16; N, 5.85 Found: C, 80.35; H, 7.23; N, 5.89.
(4-Cinnamylidene)-(4-ethoxyphenyl)amine (7e). Light yellow solid (from p-phenetidine and cinnamaldehyde); yield 96 %; m.p. 76-78 oC; IR (KBr) (cm-1) 1622.5 (C=N); 1H-NMR (CDCl3) δ 1.40 (Me, t, 3H), 4.01 (OCH2, q, 2H), 6.87-7.52 (ArH and CH=CH, m, 11H), 8.26 (HC=N, d, 1H); 13C- NMR (CDCl3) δ 14.84 (Me), 63.61 (OCH2), 114.94-157.78 (C=C and aromatic carbons), 159.29 (C=N); GC-MS m/z = 251 [M+]; Anal. calcd. for C17H17NO: C, 81.24; H, 6.82; N, 5.57. Found: C, 81.19; H, 6.78; N, 5.52.
(3,4-Dimethoxybenzylidene)-(4-ethoxyphenyl)amine (7f). Green-yellow solid (from p-phenetidine and 3,4-dimethoxybenzaldehyde); yield 94 %; m.p. 82-84 °C. IR (KBr) (cm-1) 1619.7 (C=N); 1H-NMR (CDCl3) δ 1.39 (Me, t, 3H), 3.89, 3.95 (2OMe, 2s, 6H), 4.00 (OCH2, q, 2H), 6.85-7.59 (ArH, m, 7H), 8.34 (HC=N, s, 1H); 13C-NMR (CDCl3) δ 14.86 (Me), 55.91 (OMe), 63.57 (OCH2), 108.73-157.35 (aromatic carbons), 157.78 (C=N); GC-MS m/z = 285 [M+]; Anal. calcd. for C17H19NO3: C, 71.56; H, 6.71; N, 4.91. Found: C, 71.60; H, 6.67; N, 4.94.

Typical experimental procedure for the synthesis of 2-azetidinones 8a-n

Method A. A solution of the corresponding acyl chlorides (1.50 mmol) in dry CH2Cl2 (10 mL) was slowly added to a solution of Schiff bases 7a-f (1.00 mmol) and triethylamine (3.00 mmol) in CH2Cl2 (15 mL) at –10 oC. The reaction mixture was then allowed to warm to room temperature, stirred overnight and then it was washed successively with saturated sodium bicarbonate solution (20 mL) and brine (20 mL), dried (Na2SO4) and the solvent was evaporated to give the crude product which was then purified by column chromatography or recrystalization from EtOAc.
Method B. A solution of Schiff base 7a-b (1.0 eq.) was stirred with the corresponding substituted acetic acid (1.5 eq.), p-toluenesulfonyl chloride (1.5 eq.) and triethylamine (4-5 eq.) in dry CH2Cl2 at room temperature. After 8 to 10 h, the mixture was washed with saturated sodium bicarbonate solution and brine, dried over sodium sulfate and the solvent was evaporated to give the crude product which was then purified by recrystalization from EtOAc, unless stated otherwise.
2-(1-(4-Ethoxyphenyl)-2-(4-nitrophenyl)-4-oxoazetidin-3-yl)isoindoline-1,3-dione (8a). Yield: 81%; mp: 190-192 °C; IR (CHCl3) cm-1: 1738.0, 1776.2 (CO, phth), 1788.8 (CO, β-lactam); 1H-NMR (DMSO-d6) δ 1.29 (Me, t, 3H), 3.92 (OCH2, q, 2H), 5.32 (H-4, d, 1H, J=2.5), 5.70 (H-3, d, 1H, J=2.5), 6.92-8.27 (ArH, m, 12H); 13C-NMR (DMSO-d6) δ 14.40 (Me), 58.33 (OCH2), 61.52 (C-4), 63.26 (C-3), 115.00-155.38 (aromatic carbons), 161.11 (CO, phth), 166.63 (CO, β-lactam); GC-MS m/z = 457 [M+]; Anal. calcd. for C25H19N3O6: C, 65.64; H, 4.19; N, 9.19. Found: C, 65.69; H, 4.13; N, 9.22.
2-(2-(4-Chlorophenyl)-1-(4-ethoxyphenyl)-4-oxoazetidin-3-yl)isoindoline-1,3-dione (8b). Yield: 87 %; mp: 211-213 °C IR (CHCl3) cm-1: 1720.4, 1758.9 (CO, phth), 1786.6 (CO, β-lactam); 1H-NMR (CDCl3) δ 1.37 (Me, t, 3H), 3.97 (OCH2, q, 2H), 5.22 (H-4, d, 1H, J=2.5), 5.32 (H-3, d, 1H, J=2.5), 6.78-7.76 (ArH, m, 12H); 13C-NMR (CDCl3) δ 14.78 (Me), 60.68 (OCH2), 62.68 (C-4), 63.68 (C-3), 115.02-156.01 (aromatic carbons), 161.23 (CO, phth), 166.78 (CO, β-lactam); GC-MS m/z = 448 [M+, 37Cl], 446 [M+, 35Cl]; Anal. Calcd for C25H19ClN2O4: C, 67.19; H, 4.29; N, 6.27. Found: C, 67.16; H, 4.27; N, 6.24.
2-(1-(4-Ethoxyphenyl)-2-(4-methoxyphenyl)-4-oxoazetidin-3-yl)isoindoline-1,3-dione (8c). Yield: 80 %; mp: 199-201 oC IR (CHCl3) cm-1: 1724.2, 1758.9 (CO, phth), 1778.0 (CO, β-lactam); 1H-NMR (CDCl3) δ 1.09 (Me, t, 3H), 3.74 (OCH2, q, 2H), 4.19 (OMe, s, 3H), 4.96 (H-4, d, 1H, J=2.5), 5.20 (H-3, d, 1H, J=2.5), 6.62-7.73 (ArH, m, 12H); 13C-NMR (CDCl3) δ 14.50 (Me), 55.04 (OCH2), 59.65 (OMe), 61.90 (C-4), 63.05 (C-3), 114.27-161.43 (aromatic carbons), 164.24 (CO, phth), 167.57 (CO, β-lactam); GC-MS m/z = 442 [M+]; Anal. calcd. for C26H22N2O5: C, 70.58; H, 5.01; N, 6.33. Found: C, 70.63; H, 5.05; N, 6.28.
2-(1-(4-Ethoxyphenyl)-2-oxo-4-p-tolylazetidin-3-yl)isoindoline-1,3-dione (8d). Yield: 84 % mp: 202-204 °C; IR (KBr) cm-1: 174.2, 1776.2 (CO, phth), 1788.7 (CO, β-lactam); 1H-NMR (CDCl3) δ 1.35 (Me, t, 3H), 2.33 (Me, s, 3H), 3.94 (OCH2, q, 2H), 5.25 (H-4, d, 1H, J=2.5), 5.32 (H-3, d, 1H, J=2.5), 6.68-7.85 (ArH, m, 12H); 13C-NMR (CDCl3) δ 14.30, 20.73 (2Me), 60.70 (OCH2), 62.27 (C-4), 63.13 (C-3), 114.41-155.32 (aromatic carbons), 161.11 (CO, phth), 166.35 (CO, β-lactam); GC-MS m/z = 426 [M+]; Anal. calcd. for C26H22N2O4: C, 70.58; H, 5.01; N, 6.33. Found: C, 70.64; H, 5.05; N, 6.37.
2-(1-(4-Ethoxyphenyl)-2-oxo-4-styrylazetidin-3-yl)isoindoline-1,3-dione (8e). Yield: 88 %; mp: 161-163 °C; IR (CHCl3) cm-1: 1724.2, 1758.5 (CO, phth), 1774.7 (CO, β-lactam); 1H-NMR (CDCl3) δ 1.37 (Me, t, 3H), 2.33 (Me, s, 3H), 3.97 (OCH2, q, 2H), 5.03 (H-4, dd, 1H, J=5.5, 8.5), 5.68 (H-3, d, 1H, J=5.5), 6.32 (H-5, dd, J=8.5, 16.0), 6.85 (H-6, d, 1H, J=9.0), 7.19-7.82 (ArH, m, 13H); 13C-NMR (CDCl3) δ 14.78 (Me), 57.69 (OCH2), 61.04 (C-4), 63.67 (C-3), 114.99-155.82 (C=C, aromatic carbons), 160.56 (CO, phth), 167.28 (CO, β-lactam); GC-MS m/z = 438 [M+]; Anal. calcd. for C27H22N2O4: C, 73.96; H, 5.06; N, 6.39. Found: C, 74.02; H, 5.09; N, 6.33.
1-(4-Ethoxyphenyl)-4-(4-nitrophenyl)-3-phenoxyazetidin-2-one (8f). Purified by column chromatography (eluent: 6:4 hexane-EtOAc); yield: 91 %; mp: 180-182 °C; IR (KBr) cm-1: 1743.5 (CO, β-lactam); 1H-NMR (CDCl3) δ 1.30 (Me, t, 3H), 3.89 (OCH2, q, 2H), 5.39 (H-4, d, 1H, J=4.8), 5.55 (H-3, d, 1H, J=4.8), 6.68-8.08 (ArH, m, 13H); 13C-NMR (CDCl3) δ 14.74 (Me), 61.11 (OCH2), 63.72 (C-4), 81.24 (C-3), 115.17-156.49 (aromatic carbons), 161.82 (CO, β-lactam); GC-MS m/z = 404[M+]; Anal. calcd. for C23H20N2O5: C, 68.31; H, 4.98; N, 6.93. Found: C, 68.28; H, 5.05; N, 6.88.
4-(4-Chlorophenyl)-1-(4-ethoxyphenyl)-3-phenoxyazetidin-2-one (8g). Yield: 88 %; mp: 164-166 °C; IR (KBr) cm-1:1746.5 (CO, β-lactam); 1H-NMR (CDCl3) δ 1.31 (Me, t, 3H), 3.87 (OCH2, q, 2H), 5.24 (H-4, d, 1H, J=4.8), 5.45 (H-3, d, 1H, J=4.8), 6.68-7.23 (ArH, m, 13H); 13C-NMR (CDCl3) δ 14.77 (Me), 61.41 (OCH2), 63.68 (C-4), 81.09 (C-3), 115.03-156.78 (aromatic carbons), 162.26 (CO, β-lactam); GC-MS m/z = 395[M+, 37Cl], 393 [M+, 35Cl]; Anal. calcd. for C23H20ClNO3: C, 70.14; H, 5.12; N, 3.56. Found: C, 70.24; H, 5.17; N, 3.50.
1-(4-Ethoxyphenyl)-4-(4-methoxyphenyl)-3-phenoxyazetidin-2-one (8h). Purified by column chromatography (eluent: 7:3 hexane-EtOAc); yield: 90 %; mp: 168-170 °C; IR (KBr) cm-1:1753.5 (CO, β-lactam); 1H-NMR (CDCl3) δ 1.30 (Me, t, 3H), 3.64 (OMe, s, 3H), 3.88 (OCH2, q, 2H), 5.21 (H-4, d, 1H, J=4.7), 5.41 (H-3, d, 1H, J=4.7), 6.69-7.23 (ArH, m, 13H); 13C-NMR (CDCl3) δ 14.79 (Me), 55.17 (OMe), 61.79 (OCH2), 63.65 (C-4), 81.23 (C-3), 113.84-159.84 (aromatic carbons), 162.56 (CO, β-lactam); GC-MS m/z = 389 [M+]; Anal. calcd. for C24H23NO4: C, 74.02; H, 5.95; N, 3.60. Found: C, 73.97; H, 5.90; N, 3.64.
1-(4-Ethoxyphenyl)-3-phenoxy-4-p-tolylazetidin-2-one (8i). Yield: 94 %; mp: 165-167 °C; IR (CHCl3) cm-1: 1751.2 (CO, β-lactam); 1H-NMR (CDCl3) δ 1.31 (Me, t, 3H), 2.25 (Me, s, 3H), 3.91 (OCH2, q, 2H), 5.28 (H-4, d, 1H, J=4.8), 5.47 (H-3, d, 1H, J=4.8), 6.74-7.30 (ArH, m, 13H); 13C-NMR (CDCl3) δ 14.76, 21.17 (2Me), 61.98 (OCH2), 63.60 (C-4), 81.24 (C-3), 114.91-157.08 (aromatic carbons), 162.55 (CO, β-lactam); GC-MS m/z = 373 [M+]; Anal. calcd. for C24H23NO3: C, 77.19; H, 6.21; N, 3.75. Found: C, 77.25; H, 6.26; N, 3.73.
1-(4-Ethoxyphenyl)-3-phenoxy-4-styrylazetidin-2-one (8j). Yield: 91 %; mp: 171-173 °C; IR (CHCl3) cm-1: 1749.3 (CO, β-lactam); 1H-NMR (CDCl3) δ 1.30 (Me, t, 3H), 3.90 (OCH2, q, 2H), 4.90 (H-4, dd, 1H, J=4.9, 8.5), 5.37 (H-3, d, 1H, J=4.9), 6.23 (H-5, dd, J=8.5, 16.0), 6.75 (H-6, d, 1H, J=16.0), 6.87-7.38 (ArH, m, 14H); 13C-NMR (CDCl3) δ 14.80 (Me), 61.12 (OCH2), 63.70 (C-4), 81.48 (C-3), 115.01-157.42 (C=C, aromatic carbons), 162.23 (CO, β-lactam); GC-MS m/z = 385 [M+]; Anal. calcd. for C25H23NO3: C, 77.90; H, 6.01; N, 3.63. Found: C, 77.97; H, 6.06; N, 3.60.
4-(3,4-Dimethoxyphenyl)-1-(4-ethoxyphenyl)-3-phenoxyazetidin-2-one (8k). Yield: 95 %; mp: 186-188 °C; IR (KBr) cm-1: 1758.2 (CO, β-lactam); 1H-NMR (CDCl3) δ 1.36 (Me, t, 3H), 3.75, 3.81 (2OMe, 2s, 6H), 3.95 (OCH2, q, 2H), 5.28 (H-4, d, 1H, J=4.2), 5.52 (H-3, d, 1H, J=4.2), 6.74-7.33 (ArH, m, 12H); 13C-NMR (CDCl3) δ 14.77 (Me), 55.76, 55.94 (2OMe), 62.05 (OCH2), 63.64 (C-4), 81.11 (C-3), 110.78-156.96 (aromatic carbons), 162.50 (CO, β-lactam); GC-MS m/z = 419 [M+]; Anal. calcd. for C25H25NO5: C, 71.58; H, 6.01; N, 3.34. Found: C, 71.63; H, 5,98; N, 3.38.
1-(4-Ethoxyphenyl)-3-(naphthalen-2-yloxy)-4-(4-nitrophenyl)azetidin-2-one (8l). Yield: 84 %; mp: 174-176 °C; IR (KBr) cm-1: 1750.6 (CO, β-lactam); 1H-NMR (CDCl3) δ 1.39 (Me, t, 3H), 3.95 (OCH2, q, 2H), 5.51 (H-4, d, 1H, J=4.8), 5.74 (H-3, d, 1H, J=4.8), 6.79-8.11 (ArH, m, 15H); 13C-NMR (CDCl3) δ 14.75 (Me), 61.08 (OCH2), 63.73 (C-4), 81.16 (C-3), 108.98-156.28 (aromatic carbons), 161.70 (CO, β-lactam); GC-MS m/z = 454 [M+]; Anal. calcd. for C27H22N2O5: C, 71.35; H, 4.88; N, 6.16. Found: C, 71.41; H, 4.92; N, 6.20.
3-(2,4-Dichlorophenoxy)-1-(4-ethoxyphenyl)-4-(4-nitrophenyl)azetidin-2-one (8m). Purified by column chromatography (eluent: 6:4 hexane-EtOAc); yield: 89 %; mp: 160-162 °C; IR (KBr) cm-1: 1747.8 (CO, β-lactam); 1H-NMR (CDCl3) δ 1.37 (Me, t, 3H), 3.96 (OCH2, q, 2H), 5.52 (H-4, d, 1H, J=5.1), 5.56 (H-3, d, 1H, J=5.1), 6.78-8.22 (ArH, m, 11H); 13C-NMR (CDCl3) δ 14.74 (Me), 60.44 (OCH2), 63.73 (C-4), 81.84 (C-3), 115.19-156.38 (aromatic carbons), 161.26 (CO, β-lactam); GC-MS m/z = 476 [M+, 37Cl], 474, 472 [M+, 35Cl]; Anal. calcd. for C23H18Cl2N2O5: C, 58.37; H, 3.83; N, 5.92. Found: C, 58.32; H, 3.88; N, 5.89.
1-(4-Ethoxyphenyl)-3-methoxy-4-p-tolylazetidin-2-one (8n). Yield: 92 %; mp: 133-135 °C; IR (KBr) cm-1: 1744.5 (CO, β-lactam); 1H-NMR (CDCl3) δ 1.34 (Me, t, 3H), 2.34 (Me, s, 3H), 3.94 (OCH2, q, 2H), 4.76 (H-4, d, 1H, J=4.7), 5.12 (H-3, d, 1H, J=4.7), 6.73-7.28 (ArH, m, 15H); 13C-NMR (CDCl3) δ 14.77, 21.24 (2Me), 61.61 (OCH2), 63.59 (C-4), 84.74 (C-3), 114.85-155.64 (aromatic carbons), 163.78 (CO, β-lactam); GC-MS m/z = 311 [M+]; Anal. calcd. for C19H21NO3: C, 73.29; H, 6.80; N, 4.50. Found: C, 73.34; H, 6.85; N, 4.47.

Typical experimental procedure for the synthesis of N-unsubstituted β-lactams 9a-n

A solution of (NH4)2Ce(NO3)6 (CAN, 2.0-3.5 mmol) in water (15 mL) was added dropwise to a solution of the β-lactam 8a-n (1.00 mmol) in CH3CN or THF (30 mL) at the temperature mentioned in Table 3. The mixture was stirred at corresponding temperature for the mentioned time, then water (30 mL) was added and the mixture was extracted with EtOAc (3×20 mL) and washed with 10 % aqueous NaHCO3 (40 mL). The aqueous layer of NaHCO3 was extracted again with EtOAc (15 mL) and all organic layers were combined and washed successively with 10 % NaHSO3 (2×30 mL), 10 % NaHCO3 (20 mL) and brine (20 mL) and then dried over sodium sulfate. After filtration and evaporation of the solvent in vacuo, the crude product was purified by column chromatography or recrystalization from diethyl ether, as indicated.
2-(2-(4-Nitrophenyl)-4-oxoazetidin-3-yl)isoindoline-1,3-dione (9a). Purified by recrystalization; yield: 77 %; mp: 210-212 °C; IR (CHCl3) cm-1: 1736.3, 1776.7 (CO, phth), 1785.5 (CO, β-lactam), 3373.5 (NH); 1H-NMR (DMSO-d6) δ 4.99 (H-3, d, 1H, J=2.5), 5.70 (H-4, dd, 1H, J=1.3, 2.5), 7.38-8.27 (ArH, m, 8H), 9.11 (NH, brs, 1H); 13C-NMR (DMSO-d6) δ 59.51 (C-4), 62.49 (C-3), 123.19-147.12 (aromatic carbons), 164.33 (CO, phth), 166.24 (CO, β-lactam); GC-MS m/z = 337 [M+]; Anal. calcd. for C17H11N3O5: C, 60.54; H, 3.29; N, 12.46. Found: C, 60.60; H, 3.32; N, 12.51.
2-(2-(4-Chlorophenyl)-4-oxoazetidin-3-yl)isoindoline-1,3-dione (9b). Purified by recrystalization; yield: 74 %; mp: 196-198 °C; IR (CHCl3) cm-1: 1733.9, 1777.0 (CO, phth), 1785.0 (CO, β-lactam), 3373.5 (NH); 1H-NMR (DMSO-d6) δ 4.92 (H-3, d, 1H, J=2.5), 5.04 (H-4, dd, 1H, J=2.5, 3.2), 7.41-7.92 (ArH, m, 8H), 9.01 (NH, brs, 1H); 13C-NMR (DMSO-d6) δ 54.96 (C-4), 62.53 (C-3), 123.37-138.08 (aromatic carbons), 164.48 (CO, phth), 166.70 (CO, β-lactam); GC-MS m/z = 328 [M+, 37Cl], 326 [M+, 35Cl]; Anal. calcd. for C17H11ClN2O3: C, 62.49; H, 3.39; N, 8.57. Found: C, 62.55; H, 3.43; N, 8.54.
2-(2-(4-Methoxyphenyl)-4-oxoazetidin-3-yl)isoindoline-1,3-dione (9c). Purified by recrystalization; yield: 81 %; mp: 190-192 °C; IR (KBr) cm-1: 1735.7, 1775.6 (CO, phth), 1790.2 (CO, β-lactam), 3354.4 (NH); 1H-NMR (DMSO-d6) δ 3.81 (OMe, s, 3H), 4.94 (H-3, d, 1H, J=2.5), 5.03 (H-4, dd, 1H, J=2.5, 3.1), 7.43-8.01 (ArH, m, 8H), 8.98 (NH, brs, 1H); 13C-NMR (DMSO-d6) δ 55.08 (OMe), 55.19 (C-4), 62.69 (C-3), 113.92-159.09 (aromatic carbons), 164.60 (CO, phth), 166.73 (CO, β-lactam); GC-MS m/z = 322 [M+]; Anal. calcd. for C18H14N2O4: C, 67.07; H, 4.38; N, 8.69. Found: C, 67.11; H, 4.34; N, 8.65.
2-(2-Oxo-4-p-tolylazetidin-3-yl)isoindoline-1,3-dione (9d). Purified by recrystalization; yield: 78 %; mp: 197-199 °C; IR (CHCl3) cm-1: 1740.0, 1775.0 (CO, phth), 1785.0 (CO, β-lactam), 3480.5 (NH); 1H-NMR (DMSO-d6) δ 2.35 (Me, s, 3H), 4.94 (H-4, dd, 1H, J=2.5, 3.5), 5.04 (H-3, d, 1H, J=2.5), 7.23-8.03 (ArH, m, 8H), 9.02 (NH, brs, 1H); 13C-NMR (DMSO-d6) δ 20.68 (Me), 55.43 (C-4), 62.63 (C-3), 123.39-137.27 (aromatic carbons), 164.56 (CO, phth), 166.71 (CO, β-lactam); GC-MS m/z = 306 [M+]; Anal. calcd. for C18H14N2O3: C, 70.58; H, 4.61; N, 9.15. Found: C, 70.62; H, 4.58; N, 9.21.
2-(2-Oxo-4-styrylazetidin-3-yl)isoindoline-1,3-dione (9e). Purified by recrystalization; yield: 82 %; mp: 168-170 °C; IR (CHCl3) cm-1: 1726.2, 1768.6 (CO, phth), 1784.0 (CO, β-lactam), 3417.0 (NH); 1H-NMR (DMSO-d6) δ 4.72 (H-4, m, 1H), 5.60 (H-3, d, 1H, J=5.2), 6.25 (H-5, dd, 1H, J=7.6, 16.0), 6.70 (H-6, d, 1H, J=16.0), 7.22-7.92 (ArH, m, 9H), 8.85 (NH, brs, 1H); 13C-NMR (DMSO-d6) δ 55.38 (C-4), 58.69 (C-3), 123.42-135.69 (C=C, aromatic carbons), 164.06 (CO, phth), 166.93 (CO, β-lactam); GC-MS m/z = 318 [M+]; Anal. calcd. for C19H14N2O3: C, 71.69; H, 4.43; N, 8.80. Found: C, 71.74; H, 4.49; N, 8.78.
4-(4-Nitrophenyl)-3-phenoxyazetidin-2-one (9f). Purified by column chromatography (eluent: 4:6 hexane-EtOAc); yield: 80 %; mp: 160-162 °C; IR (KBr) cm-1: 1774.4 (CO), 3247.9 (NH); 1H-NMR (DMSO-d6) δ 5.33 (H-3, d, 1H, J=4.8), 5.77 (H-4, dd, 1H, J=2.2, 4.8), 6.77-8.20 (ArH, m, 9H), 9.10 (NH, brs, 1H); 13C-NMR (DMSO-d6) δ 56.01 (C-4), 82.71 (C-3), 115.04-156.24 (aromatic carbons), 165.78 (CO, β-lactam); GC-MS m/z = 284 [M+]; Anal. calcd. for C15H12N2O4: C, 63.38; H, 4.25; N, 9.85. Found: C, 63.44; H, 4.30; N, 9.87.
4-(4-Chlorophenyl)-3-phenoxyazetidin-2-one (9g). Purified by recrystalization; yield: 82 %; mp: 188-190 °C; IR (KBr) cm-1: 1773.5 (CO), 3420.0 (NH); 1H-NMR (DMSO-d6) δ 5.09 (H-3, d, 1H, J=4.5), 5.61 (H-4, dd, 1H, J=2.1, 4.5), 6.77-7.32 (ArH, m, 9H), 8.89 (NH, brs, 1H); 13C-NMR (DMSO-d6) δ 56.91 (C-4), 82.26 (C-3), 114.98-156.34 (aromatic carbons), 165.90 (CO, β-lactam); GC-MS m/z = 275 [M+, 37Cl], 273 [M+, 35Cl]; Anal. calcd. for C15H12ClNO2: C, 65.82; H, 4.42; N, 5.12. Found: C, 65.78; H, 4.46; N, 5.08.
4-(4-Methoxyphenyl)-3-phenoxyazetidin-2-one (9h). Purified by recrystalization; yield: 86 %; mp: 157-159 °C; IR (CHCl3) cm-1: 1776.3 (CO), 3409.9 (NH); 1H-NMR (DMSO-d6) δ 3.66 (MeO, s, 3H), 5.02 (H-3, d, 1H, J=4.3), 5.52 (H-4, dd, 1H, J=1.8, 4.3), 6.55-7.35 (ArH, m, 9H), 9.08 (NH, brs, 1H); 13C-NMR (DMSO-d6) δ 54.83 (OMe), 56.45 (C-4), 81.76 (C-3), 113.19-158.68 (aromatic carbons), 166.84 (CO, β-lactam); GC-MS m/z = 269 [M+]; Anal. calcd. for C16H15NO3: C, 71.36; H, 5.61; N, 5.20. Found: C, 71.42; H, 5.66; N, 5.24.
3-Phenoxy-4-p-tolylazetidin-2-one (9i). Purified by recrystalization; yield: 84 %; mp: 180-182 °C; IR (KBr) cm-1: 1773.9 (CO), 3300.0 (NH); 1H-NMR (DMSO-d6) δ 1.95 (Me, s, 3H), 4.81 (H-3, d, 1H, J=4.4), 5.32 (H-4, dd, 1H, J=2.2, 4.4), 6.54-6.98 (ArH, m, 9H), 8.60 (NH, brs, 1H); 13C-NMR (DMSO-d6) δ 20.62 (Me), 56.52 (C-4), 82.34 (C-3), 115.07-156.66 (aromatic carbons), 166.14 (CO, β-lactam); GC-MS m/z = 253 [M+]; Anal. calcd. for C16H15NO2: C, 75.87; H, 5.97; N, 5.53. Found: C, 75.84; H, 6.03; N, 5.48.
3-Phenoxy-4-styrylazetidin-2-one (9j). Purified by column chromatography (eluent: 5:5 hexane-EtOAc); yield: 76 %; mp: 190-192 °C; IR (KBr) cm-1: 1775.7 (CO), 3310.0 (NH); 1H-NMR (DMSO-d6) δ 4.64 (H-4, m, 1H,), 5.51 (H-3, d, 1H, J= 4.3), 6.18 (H-5, dd, 1H, J= 7.4, 15.9), 6.65 (H-6, d, 1H, J= 15.9), 6.90-7.33 (ArH, m, 9H), 8.96 (NH, brs, 1H); 13C-NMR (DMSO-d6) δ 60.67 (C-4), 87.47 (C-3), 120.30-162.15 (C=C, aromatic carbons), 170.78 (CO, β-lactam); GC-MS m/z = 265 [M+]; Anal. calcd. for C17H15NO2: C, 76.96; H, 5.70; N, 5.28. Found: C, 76.92; H, 5.77; N, 5.24.
4-(3,4-Dimethoxyphenyl)-3-phenoxyazetidin-2-one (9k). Purified by recrystalization; yield: 86 %; mp: 140-142 °C; IR (KBr) cm-1: 1777.7 (CO), 3418.9 (NH); 1H-NMR (DMSO-d6) δ 3.58, 3.66 (2MeO, 2s, 6H), 5.03 (H-3, d, 1H, J=4.0), 5.58 (H-4, dd, 1H, J=2.2, 4.0), 6.64-7.26 (ArH, m, 8H), 8.83 (NH, brs, 1H); 13C-NMR (DMSO-d6) δ 55.23, 55.25 (2OMe), 56.40 (C-4), 81.13 (C-3), 111.02-156.59 (aromatic carbons), 165.98 (CO, β-lactam); GC-MS m/z = 299 [M+]; Anal. calcd. for C17H17NO4: C, 68.21; H, 5.72; N, 4.68. Found: C, 68.31; H, 5.79; N, 4.73.
3-(Naphthalen-2-yloxy)-4-(4-nitrophenyl)azetidin-2-one (9l). Purified by column chromatography (eluent: 5:5 hexane-EtOAc); yield: 83 %; mp: 172-174 °C; IR IR (KBr) cm-1: 1769.6 (CO), 3354.4 (NH); 1H-NMR (DMSO-d6) δ 5.38 (H-3, d, 1H, J=4.5), 5.86 (H-4, dd, 1H, J=2.3, 4.5), 7.31-7.78 (ArH, m, 11H), 9.10 (NH, brs, 1H); 13C-NMR (DMSO-d6) δ 56.05 (C-4), 82.71 (C-3), 117.51-147.53 (aromatic carbons), 165.66 (CO, β-lactam); GC-MS m/z = 334 [M+]; Anal. calcd. for C19H14N2O4: C, 68.26; H, 4.22; N, 8.38. Found: C, 68.23; H, 4.26; N, 8.42.
3-(2,4-Dichlorophenoxy)-4-(4-nitrophenyl)azetidin-2-one (9m). Purified by column chromatography (eluent: 5:5 hexane-EtOAc); yield: 78 %; mp: 160-162 °C; IR (KBr) cm-1: 1775.5 (CO), 3320.5 (NH); 1H-NMR (DMSO-d6) δ 5.34 (H-3, d, 1H, J=3.5), 5.77 (H-4, dd, 1H, J=2.4, 3.5), 7.32-8.22 (ArH, m, 7H), 9.20 (NH, brs, 1H); 13C-NMR (DMSO-d6) δ 55.49 (C-4), 82.99 (C-3), 116.31-150.69 (aromatic carbons), 165.00 (CO, β-lactam); GC-MS m/z = 356 [M+, 37Cl], 354, 352 [M+, 35Cl]; Anal. calcd. for C15H10Cl2N2O4: C, 51.01; H, 2.85; N, 7.93. Found: C, 51.05; H, 2.92; N, 7.97.
3-Methoxy-4-p-tolylazetidin-2-one (9n). Purified by column chromatography (eluent: 4:6 hexane-EtOAc); yield: 77 %; mp: 92-94 °C; IR (KBr) cm-1: 1765.8 (CO), 3414.0 (NH); 1H-NMR (DMSO-d6) δ 2.11 (Me, s, 3H), 2.82 (OMe, s, 3H), 4.51 (H-4, dd, 1H, J=2.2, 4.4), 4.59 (H-3, d, 1H, J=4.4), 6.69-7.07 (ArH, m, 4H), 8.41 (NH, brs, 1H); 13C-NMR (DMSO-d6) δ 20.65 (Me), 56.23 (OMe), 57.12 (C-4), 86.26 (C-3), 127.35-136.75 (aromatic carbons), 167.48 (CO, β-lactam); GC-MS m/z = 191 [M+]; Anal. calcd. for C11H13NO2: C, 69.09; H, 6.85; N, 7.32. Found: C, 69.14; H, 6.92; N, 7.28.


The authors thank the Shiraz University Research Council for financial support (Grant No. 85-GR-SC-23).


  1. Greene, T.W.; Wuts, P.G.M. Protective Groups in Organic Synthesis, Third Edition; John Wiley & Sons, Inc.: New York, 1999; p. 632. [Google Scholar]
  2. Chan, W.C.; White, P.D.; Beythien, J.; Steinauer, R. Facile Synthesis of Protected C-terminal Peptide Segments by Fmoc/But Solid-phase Procedures on N-Fmoc-9-amino-xanthen-3-yloxy methyl Polystyrene resin. Chem. Commun. 1995, 589–592. [Google Scholar]
  3. Ojima, I. Recent Advances in the beta-Lactam Synthon Method. Acc. Chem. Res. 1995, 28, 383–389. [Google Scholar] [CrossRef]
  4. Suffness, M. Taxol Science and Applications; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar]
  5. Aszodi, J.; Bonnet, A.; Teutsch, G. Enantioselective synthesis of a Versatile 2-Isocephem Synthon. Tetrahedron 1990, 46, 1579–1586. [Google Scholar]Thomas, R.C. An Efficient Asymmetric Synthesis of 3S, 4S-3-Acylamino-4-hydroxymethylazetidin-2-ones. Tetrahedron Lett. 1989, 30, 5239–5242. [Google Scholar]
  6. Georg, G.I.; He, P.; Kant, J.; Mudd, J. N-Vinyl and N-Unsubstituted β-Lactams from 1-Substituted 2-aAa-1, 3-butadienes. Tetrahedron Lett. 1990, 31, 451–454. [Google Scholar]Georg, G.I.; He, P.; Kant, J.; Ly, A.M.; Lampe, L. 2-Aza-1,3-dienes as Novel Precursors for the Synthesis of N-Unsubstituted β-Lactams. A Three Step Synthesis of 4-Acetoxy-3-phenoxy-2-azeridinone. Tetrahedron Lett. 1988, 29, 2409–2412. [Google Scholar]
  7. Palomo, C.; Aizpurua, J.M.; Galarza, R.; Benito, A.; Khamrai, U.K.; Eikesetha, U.; Linden, A. On the Question of the Diastereoselective Alkylation of 4-Unsubstituted 3-Amino β-Lactams. A Concise Synthesis of α-Branched α-Amino β-Lactams and their Coupling with α-Amino Acid Esters. Tetrahedron 2000, 56, 5563–5570. [Google Scholar]Hart, D.J.; Kanai, K.; Thomas, D.G.; Yang, T.-K. Preparation of Primary Amines and 2-Azetidinones via N-(Trimethylsilyl)imines. J. Org. Chem. 1983, 48, 289–294. [Google Scholar]
  8. Jarrahpour, A.A.; Zarei, M. Synthesis of Novel N-Sulfonyl Monocyclic β-Lactams as Potential Antibacterial Agents. Molecules 2006, 11, 49–58. [Google Scholar]Turos, E.; Heldreth, B. B.; Long, S.; Jang, T.E.; Reddy, G.S.K; Dickey, S.; Lim, D. V. N-Thiolated β-Lactam Antibacterials: Effects of the N-Organothio Substituent on Anti-MRSA Activity. Bioorg. Med. Chem. 2006, 14, 3775–3784. [Google Scholar]Del Buttero, P.; Moltenia, G.; Pilati, T. Nitrilimine Cycloaddition onto 2-Azetidinones Bearing Alkenyl Dipolarophile(s). Tetrahedron 2005, 61, 2413–2419. [Google Scholar]
  9. Gimbert, Y.; Greene, A.E.; Lucatelli, C.; Viton, F. Synthesis of C-3' Methyl Taxotere (Docetaxel). J. Org. Chem. 2002, 67, 9468–4970. [Google Scholar] [CrossRef]
  10. Bhawal, B. M.; Deshmukh, A.R.A.S.; Karupaiyan, K.; Srirajan, V. Synthesis of N1-Unsubstituted β-Lactams via a Facile Deprotection of N1-[(α-Thiophenyl)benzyl] Group. Tetrahedron 1998, 54, 4375–4386. [Google Scholar] [CrossRef]
  11. Fukuyama, T.; Frank, R.K.; Jewell, C.F. Total Synthesis of dl-Antibiotic 593A. J. Am. Chem. Soc. 1980, 102, 2122–2123. [Google Scholar]Jacob, P.; Callerv, P.S.; Shulain, A.T.; Castaanoli, N. A Convenient Synthesis of Quinones from Hydroquinone Dimethyl Ethers. Oxidative Demethylation with Ceric Ammonium Nitrate. J. Org. Chem. 1976, 41, 3627–3629. [Google Scholar]
  12. Huffman, W. F.; Holden, K. G.; Buckley, T. F.; Gleaaon, J.G.; Wu, L. Nuclear Analogs of β-lactam Antibiotics. 1. The Total Synthesis of a 7-Oxo-1,3-diazabicyclo[3.2.0]heptane-2-carboxylic Acid via a Versatile Monocyclic .beta.-lactam Intermediate. J. Am. Chem. Soc. 1977, 99, 2352–2353. [Google Scholar]Gleason, J.G.; Bryan, D.B.; Hall, R.F.; Holden, K.G.; Huffman, W.F. Nuclear Analogs of β-lactam Antibiotics. 2. The Total Synthesis of 8-Oxo-4-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic Acids. J. Am. Chem. Soc. 1977, 99, 2353–2355. [Google Scholar]
  13. Bose, A.K.; Manhas, M.S.; Van Der Veen, J.M.; Amin, S.G.; Fernandu, F.; Gala, K.; Gruska, R.; Kapur, J. C.; Khajavi, M. S.; Kreder, J.; Mukkavilli, L.; Ram, B.; Sugiura, M.; Vincent, J.E. A Convenient Synthesis of α-Amino-β-lactams. Tetrahedron 1981, 37, 2321–2334. [Google Scholar]Bose, A. K.; Manhas, M.S.; Amin, S.G.; Kapur, J. C.; Kreder, J.; Mukkavilli, L.; Ram, B.; Vincent, J.E. Dianion Derivatives of Methyl- and Isopropyl-2.4-pentadienedithioate as d5-Reagents. Tetrahedron Lett. 1979, 20, 2271–2274. [Google Scholar]Bose, A. K.; Manhas, M.S.; Mukkavilli, L.; Amin, S.G.; Ram, B.; Vincent, J.E. Non-Hazardous Synthesis of N-Unsubstituted cis-3-Amido-2-azetidinones. Synthesis 1979, 543–544. [Google Scholar]
  14. Balasubramanian, S.; Gordon, K.H. Exploring a Benzyloxyaniline Linker Utilizing Ceric Ammonium Nitrate (CAN) as a Cleavage Reagent: Solid-Phase Synthesis of N-Unsubstituted β-Lactams and Secondary Amides. Org. Lett. 2001, 3, 53–56. [Google Scholar] [CrossRef]
  15. Banik, B. K.; Dasgupta, S. K. A New Entry to N-Unsubstituted β-Lactams Through a Solid-phase Approach. Tetrahedron Lett. 2002, 43, 9445–9447. [Google Scholar] [CrossRef]
  16. Tavani, C.; Bianchi, L.; Dell’Erba, C.; Maccagno, M.; Mugnoli, A.; Novi, M.; Petrillo, G.; Sancassan, F. Oxohydrazones as Imine Component in the Synthesis of 4-Functionalized Azetidinones by the Staudinger Reaction. Tetrahedron 2003, 59, 10195–10201. [Google Scholar] [CrossRef]
  17. Hamlet, A. B.; Durst, T. 1-(Dialkylaminomethyl)-azetidin-2-ones. Intermediates in a Highly Stereoselective Preparation of trans-3,4-Disubstituted Azetidin-2-ones. Can. J. Chem. 1983, 61, 411–415. [Google Scholar]Cignarella, G.; Cristiani, G. F.; Testa, E. Auf das Zentralnervensystem Wirkende Substanzen, XXVIII. über Weitere 3-Substituierte Azetidinone-(2). Justus Liebigs Ann. Chem. 1963, 661, 181–187. [Google Scholar]
  18. Kronenthal, D.K.; Han, C.Y.; Taylor, M.K. Oxidative N-Dearylation of 2-Azetidinones. p-Anisidine as a Source of Azetidinone Nitrogen. J. Org. Chem. 1982, 47, 2765–2768. [Google Scholar] [CrossRef]
  19. Podlech, J.; Linder, M.R. Cycloadditions of Ketenes Generated in the Wolff Rearrangement. Stereoselective Synthesis of Aminoalkyl-Substituted β-Lactams from -Amino Acids. J. Org. Chem. 1997, 62, 5873–5883. [Google Scholar]
  20. Tanoue, Y.; Terada, A. The 2- or 6-(α-Hydroxyalkyl- and α-Oxoalkyl)-5,8-dimethoxy-1,4-naphthoquinones from the Oxidative Demethylation of 2-(α-Hydroxyalkyl- and α-Oxoalkyl)-1,4,5,8-tetramethoxynaphthalenes with Cerium(IV) Ammonium Nitrate, and the Further Demethylations to Naphthazarins. Bull. Chem. Soc. Jpn. 1988, 61, 2039–2045. [Google Scholar] [CrossRef]
  21. (a) ref 20. Corley, E.G.; Karady, S.; Abramson, N.L. Anodic N-Dearylation of 2-Azetidinones. Tetrahedron Lett. 1988, 29, 1497–1500. [Google Scholar] [CrossRef]
  • Sample Availability: Contact the authors.
Back to TopTop