Effect of Fluoride Ion on the Separation of Fluorite from Calcite Using Flotation with Acidified Water Glass
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Micro-Flotation Experiments
2.3. Solution Chemistry
2.4. X-ray Photoelectron Spectroscopy Analysis
2.5. ICP–MS Tests
2.6. Flotation Froth Imaging
2.7. Contact Angle Measurements
3. Results and Discussions
3.1. Micro-Flotation Experiments
3.2. Solution Chemistry
3.3. XPS Analysis
3.4. ICP–MS Tests
3.5. Image Analysis of Flotation Froth
3.6. Contact Angle Measurement Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pelham, L.J. Sources and availability of raw materials for fluorine chemistry. J. Fluor. Chem. 1985, 30, 1–17. [Google Scholar] [CrossRef]
- Akgün, A.; Teğin, İ.; Minerals, R.Z.; Characterization, M. Engineering, Enrichment of Molybdenum and Fluorite by Flotation of Fluorite Ore Containing Molybdenum. J. Miner. Mater. Charact. Eng. 2006, 5, 103. [Google Scholar]
- Masoudi, S.M.; Ezzati, E.; Rashidnejad-Omran, N.; Moradzadeh, A.J.R.P. Geoeconomics of fluorspar as strategic and critical mineral in Iran. Resour. Policy 2017, 52, 100–106. [Google Scholar] [CrossRef]
- Liu, L.X.; Wang, S.J.; Dong, Y.C.; Jia, X.H. Performance of Low Fluoride Dephosphorization Slag of Hot Metal. J. Iron Steel Res. Int. 2011, 18, 11–15. [Google Scholar] [CrossRef]
- Engelhardt, J.B.; Dabringhaus, H.; Wandelt, K. Atomic force microscopy study of the CaF2(111) surface: From cleavage via island to evaporation topographies. Surf. Sci. 2000, 448, 187–200. [Google Scholar] [CrossRef]
- Free, M.L.; Miller, J.D.J.L. Kinetics of 18Carbon Carboxylate Adsorption at the Fluorite Surface. Langmuir 1997, 13, 4377–4382. [Google Scholar] [CrossRef]
- Zheng, R.; Ren, Z.; Gao, H.; Chen, Z.; Qian, Y.; Li, Y.J. Effects of crystal chemistry on sodium oleate adsorption on fluorite surface investigated by molecular dynamics simulation. Miner. Eng. 2018, 124, 77–85. [Google Scholar] [CrossRef]
- Jia, W.H.; Qin, W.Q.; Chen, C.; Zhu, H.L.; Jiao, F.J. Collecting performance of vegetable oils in scheelite flotation and differential analysis. J. Cent. South Univ. 2019, 26, 787–795. [Google Scholar] [CrossRef]
- Liu, J.; Xie, R.; Zhu, Y.; Li, Y.; Liu, C.J. Flotation behavior and mechanism of styrene phosphonic acid as collector on the flotation separation of fluorite from calcite. J. Mol. Liq. 2021, 326, 115261. [Google Scholar] [CrossRef]
- Hanna, H.S.; Somasundaran, P. Flotation of Salt-Type Minerals; Columbia University: New York, NY, USA, 1976. [Google Scholar]
- Filippova, I.V.; Filippov, L.O.; Duverger, A.; Severov, V.V. Synergetic effect of a mixture of anionic and nonionic reagents: Ca mineral contrast separation by flotation at neutral pH—ScienceDirect. Miner. Eng. 2014, 66–68, 135–144. [Google Scholar] [CrossRef]
- Houot, R.J. Beneficiation of phosphatic ores through flotation: Review of industrial applications and potential developments. Int. J. Miner. Process. 1982, 9, 353–384. [Google Scholar] [CrossRef]
- Marinakis, K.I.; Shergold, H.L. Influence of sodium silicate addition on the adsorption of oleic acid by fluorite, calcite and barite. Int. J. Miner. Process. 1985, 14, 177–193. [Google Scholar] [CrossRef]
- Kupka, N.; Rudolph, M.J. Technology, Froth flotation of scheelite—A review. Int. J. Min. Sci. Technol. 2017, 28, 373–384. [Google Scholar] [CrossRef]
- Zhou, Q.; Lu, S.J. Acidized sodium silicate—An effective modifier in fluorite flotation. Miner. Eng. 1992, 5, 435–444. [Google Scholar] [CrossRef]
- Zhou, W.; Moreno, J.; Torres, R.; Valle, H.; Song, S.J. Flotation of fluorite from ores by using acidized water glass as depressant. Miner. Eng. 2013, 45, 142–145. [Google Scholar] [CrossRef]
- Ding, K.; Laskowski, J.S. Application of a modified water glass in a cationic flotation of calcite and dolomite %. J. Can. Metall. Q. 2006, 45, 199–206. [Google Scholar] [CrossRef]
- Asadi, M.; Mohammadi, M.; Moosakazemi, F.; Esmaeili, M.J.; Zakeri, M.J. Development of an environmentally friendly flowsheet to produce acid grade fluorite concentrate. J. Clean. Prod. 2018, 186, 782–798. [Google Scholar] [CrossRef]
- Gao, Z.; Wang, C.; Sun, W.; Gao, Y.; Kowalczuk, P.B. Froth flotation of fluorite: A review. Adv. Colloid Interface Sci. 2021, 290, 102382. [Google Scholar] [CrossRef] [PubMed]
- Agar, G.E.J.U. Scheelite Flotation Process; Vale Canada Ltd.: Burlington, ON, Canada, 1984. [Google Scholar]
- Zyga, B.; Zyja, B.; Wei, S.; Ysg, C.J. Typical roles of metal ions in mineral flotation: A review. Trans. Nonferrous Met. Soc. China 2021, 31, 2081–2101. [Google Scholar]
- Zhao, C.; Zc, A.; Jw, A.; Yc, A.J. Synergistic depression mechanism of Ca 2+ ions and sodium silicate on bastnaesite flotation. J. Rare Earths 2021, in press. [Google Scholar] [CrossRef]
- Sun, R.; Liu, D.; Liu, Y.; Wang, D.; Wen, S. Pb-water glass as a depressant in the flotation separation of fluorite from calcite. Colloids Surf. A Physicochem. Eng. Asp. 2021, 629, 127447. [Google Scholar] [CrossRef]
- Dong, L.; Wei, Q.; Qin, W.; Science, F.J. Effect of iron ions as assistant depressant of citric acid on the flotation separation of scheelite from calcite. Chem. Eng. Sci. 2021, 241, 116720. [Google Scholar] [CrossRef]
- Feng, Q.; Zhao, W.; Wen, S.; Cao, Q.J.S.; Technology, P. Activation mechanism of lead ions in cassiterite flotation with salicylhydroxamic acid as collector. Sep. Purif. Technol. 2017, 178, 193–199. [Google Scholar] [CrossRef]
- Wang, H.; Wen, S.; Han, G.; Feng, Q.J. Modification of malachite surfaces with lead ions and its contribution to the sulfidization flotation. Appl. Surf. Sci. 2021, 550 (Pt 2), 149350. [Google Scholar] [CrossRef]
- Zhao, W.; Liu, D.; Feng, Q.J. Enhancement of salicylhydroxamic acid adsorption by Pb(II). Miner. Eng. 2020, 152, 106373. [Google Scholar] [CrossRef]
- Jin, S.; Ou, L.; Ma, X.; Zhou, H.; Zhang, Z.J. Activation mechanisms of sodium silicate-inhibited fluorite in flotation under neutral and slightly alkaline conditions—ScienceDirect. Miner. Eng. 2020, 161, 106738. [Google Scholar] [CrossRef]
- Qiang, L.; Li, Y.; Zhang, J.; Ying, C.; Ruan, X.; Liu, J.; Qian, G.J. Effective removal of zinc from aqueous solution by hydrocalumite. Chem. Eng. J. 2011, 175, 33–38. [Google Scholar]
- Markovski, J.S.; Marković, D.; Đokić, V.; Mitrić, M.; Journal, A.M. Arsenate adsorption on waste eggshell modified by goethite, α-MnO2 and goethite/α-MnO2. Chem. Eng. J. 2014, 237, 430–442. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Liu, T.; Cai, Z.J.C.; Physicochemical, S.A.; Aspects, E. Influence of metal ions on muscovite and calcite flotation: With respect to the pre-treatment of vanadium bearing stone coal. Colloids Surf. A Physicochem. Eng. Asp. 2019, 564, 89–94. [Google Scholar] [CrossRef]
- Li, C.; Bai, S.; Ding, Z.; Yu, P.; Wen, S. Visual MINTEQ model, ToF–SIMS, and XPS study of smithsonite surface sulfidation behavior: Zinc sulfide precipitation adsorption. J. Taiwan Inst. Chem. Eng. 2019, 96, 53–62. [Google Scholar] [CrossRef]
- Foucaud, Y.; Badawi, M.; Filippov, L.O.; Barres, O.; Filippova, I.V.; Lebѐgue, S. Synergistic adsorptions of Na2CO3 and Na2SiO3 on calcium minerals revealed by spectroscopic and ab initio molecular dynamics studies. Chem. Sci. 2019, 10, 9928–9940. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Chi, R.; Xu, Z.J.I.; Research, E.C. Solution Chemistry Study of Salt-type Mineral Flotation Systems: Role of Inorganic Dispersants. Ind. Eng. Chem. Res. 2003, 42, 1641–1647. [Google Scholar]
- Wang, D.J. Chapter 3 Mineral–solution equilibria. Dev. Miner. Process. 2006, 17, 45–72. [Google Scholar]
- Martell, A.E.; Smith, R.M. Critical Stability Constants; Plenum Press: New York, NY, USA, 1975. [Google Scholar]
- Amankonah, J.O.; Somasundaran, P.; Ananthapadmabhan, K.P.J.C. Surfaces, Effects of dissolved mineral species on the dissolution/ precipitation characteristics of calcite and apatite—ScienceDirect. Colloids Surf. 1985, 15, 295–307. [Google Scholar] [CrossRef]
- Tian, J.; Xu, L.; Sun, W.; Zeng, X.; Fang, S.; Han, H.; Hong, K.; Hu, Y.J. Use of Al2(SO4)3 and acidified water glass as mixture depressants in flotation separation of fluorite from calcite and celestite. Miner. Eng. 2019, 137, 160–170. [Google Scholar] [CrossRef]
- Kaneko, Y.; Suginohara, Y.J. Observation of Si 2p Binding Energy by ESCA and Determination of O0, O− and O2− Ions in Silicate. J. Jpn. Inst. Met. 1978, 42, 285–289. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Gao, Z.; Khoso, S.A.; Gao, J.; Wei, S.; Wei, P.; Hu, Y.J. Selective adsorption of benzhydroxamic acid on fluorite rendering selective separation of fluorite/calcite. Appl. Surf. Sci. 2018, 435, 752–758. [Google Scholar]
- NIST XPS Database. Available online: https://srdata.nist.gov/xps/selEnergyType.aspx (accessed on 15 September 2012).
- Chen, W.; Feng, Q.; Zhang, G.; Yang, Q.; Zhang, C.; Xu, F.J. The flotation separation of scheelite from calcite and fluorite using dextran sulfate sodium as depressant. Int. J. Miner. Process. 2017, 169, 53–59. [Google Scholar] [CrossRef]
Products | Yield (%) | Fluorite Grade (%) | Fluorite Recovery (%) | Calcite Grade (%) | Calcite Recovery (%) |
---|---|---|---|---|---|
Concentrate | 16.45 | 35.26 | 11.60 | 64.74 | 21.30 |
Tailings | 83.55 | 52.90 | 88.40 | 47.10 | 78.70 |
Feed | 100 | 50 | 100 | 50 | 100 |
Products | Yield (%) | Fluorite Grade (%) | Fluorite Recovery (%) | Calcite Grade (%) | Calcite Recovery (%) |
---|---|---|---|---|---|
Concentrate | 46.46 | 61.08 | 56.76 | 38.92 | 36.16 |
Tailings | 53.54 | 40.38 | 43.24 | 59.62 | 63.84 |
Feed | 100 | 50 | 100 | 50 | 100 |
Species | Pertinent Reactions and Constants | |
---|---|---|
Ca2+ | ||
CaF2 | ||
CaCO3 | ||
CaSiO3 | ||
Conditions | ||||
---|---|---|---|---|
Elements | Shift | |||
AWG | AWG + NaF | |||
Concentration (%) | Ca2p | 23.42 | 21.15 | −2.27 |
F1s | 24.80 | 26.22 | +1.42 | |
O1s | 18.83 | 20.09 | +1.26 | |
C1s | 28.82 | 29.24 | +0.42 | |
Si2p | 4.13 | 3.30 | −0.83 |
Conditions | ||||
---|---|---|---|---|
Elements | Shift | |||
AWG | AWG + NaF | |||
Concentration (%) | Ca2p | 13.48 | 14.96 | +1.48 |
F1s | 0 | 0.99 | +0.99 | |
O1s | 45.51 | 45.82 | +0.31 | |
C1s | 38.81 | 37.20 | −1.61 | |
Si2p | 2.20 | 1.03 | −1.17 |
Contact Angle (Degree) | |||||
---|---|---|---|---|---|
Species | Untreated | AWG-Treated | Shift | AWG + NaF-Treated | Shift |
Fluorite | 77.20 | 56.74 | −20.46 | 81.14 | +24.40 |
Calcite | 76.38 | 57.71 | −18.67 | 58.47 | +0.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Liu, D.; Mao, Y.; Sun, R.; Liu, R.; Wen, S. Effect of Fluoride Ion on the Separation of Fluorite from Calcite Using Flotation with Acidified Water Glass. Minerals 2021, 11, 1203. https://doi.org/10.3390/min11111203
Wang D, Liu D, Mao Y, Sun R, Liu R, Wen S. Effect of Fluoride Ion on the Separation of Fluorite from Calcite Using Flotation with Acidified Water Glass. Minerals. 2021; 11(11):1203. https://doi.org/10.3390/min11111203
Chicago/Turabian StyleWang, Daqian, Dan Liu, Yingbo Mao, Ruofan Sun, Ruitao Liu, and Shuming Wen. 2021. "Effect of Fluoride Ion on the Separation of Fluorite from Calcite Using Flotation with Acidified Water Glass" Minerals 11, no. 11: 1203. https://doi.org/10.3390/min11111203
APA StyleWang, D., Liu, D., Mao, Y., Sun, R., Liu, R., & Wen, S. (2021). Effect of Fluoride Ion on the Separation of Fluorite from Calcite Using Flotation with Acidified Water Glass. Minerals, 11(11), 1203. https://doi.org/10.3390/min11111203