Etiologies of Melanoma Development and Prevention Measures: A Review of the Current Evidence
Abstract
:Simple Summary
Abstract
1. Introduction
2. Heritable Etiologies for Melanoma Development
2.1. Genetic Syndromes That Predispose to Melanoma Development
2.2. Heritable Traits Associated with Melanoma Risk
2.3. Genetic Screening Recommendations
2.4. Monitoring of High-Risk Patients for Melanoma Development
3. Sun-Seeking Behaviors and Melanoma Development
3.1. Exposure to Sunlight Confers Risk of Melanoma Development
3.2. Tanning Correlation with Increased Melanoma Incidence
3.3. Tanning Impact on Melanoma Genotype
4. UV Addiction
4.1. Biological Basis of UV Addiction
4.2. Genetic Predisposition toward UV Addiction
4.3. Role of Vitamin D in UV Addiction
4.4. Declining Tanning Prevalence in the United States and Australia
5. Therapeutic Approaches for Primary and Secondary Chemoprevention: Current Clinical Evidence
5.1. Sunscreen
5.1.1. Types of Sunscreens
5.1.2. Data Addressing the Use of Sunscreen
5.1.3. Novel Methods to Improve Sunscreen Usage and Efficacy
5.2. Non-Sunscreen Chemopreventive Agents
5.2.1. Nicotinamide
5.2.2. Nonsteroidal Anti-Inflammatory Drugs (NSAIDs)
5.2.3. Vitamin A Derivatives
5.2.4. N-Acetylcysteine (NAC)
5.2.5. Vitamin D
6. Socioeconomic Risk Factors for Melanoma Development
6.1. Factors Influencing Public Awareness
6.2. Current Outreach Programs to Address Cultural and Community Barriers to Prevention Efforts
6.3. Access and Barriers to Specialist Care
6.3.1. Disparate Access to Skin Exams
6.3.2. Insurance
6.3.3. Geographic Barriers to Care
6.3.4. Telemedicine/Virtual Intervention
6.3.5. Non-Specialist Intervention
7. Screening and Image-Based Approaches to Secondary Prevention
7.1. Imaging Techniques
7.2. Application of Artificial Intelligence to Melanoma Screening
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Stern, R.S. Prevalence of a history of skin cancer in 2007: Results of an incidence-based model. Arch. Dermatol. 2010, 146, 279–282. [Google Scholar] [CrossRef] [PubMed]
- Cancer Stat Facts: Melanoma of the Skin. 2021. Available online: https://seer.cancer.gov/statfacts/html/melan.html (accessed on 30 June 2021).
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Guy, G.P., Jr.; Thomas, C.C.; Thompson, T.; Watson, M.; Massetti, G.M.; Richardson, L.C.; Centers for Disease Control and Prevention (CDC). Vital signs: Melanoma incidence and mortality trends and projections—United States, 1982-2030. MMWR Morb. Mortal. Wkly. Rep. 2015, 64, 591–596. [Google Scholar] [PubMed]
- Jerant, A.F.; Johnson, J.T.; Sheridan, C.D.; Caffrey, T.J. Early detection and treatment of skin cancer. Am. Fam. Physician 2000, 62, 352–381. [Google Scholar] [PubMed]
- Goldstein, A.M.; Tucker, M.A. Genetic epidemiology of cutaneous melanoma: A global perspective. Arch. Dermatol. 2001, 137, 1493–1496. [Google Scholar] [CrossRef]
- Soura, E.; Eliades, P.J.; Shannon, K.; Stratigos, A.J.; Tsao, H. Hereditary melanoma: Update on syndromes and management: Genetics of familial atypical multiple mole melanoma syndrome. J. Am. Acad. Dermatol. 2016, 74, 395–407. [Google Scholar] [CrossRef] [Green Version]
- Chan, S.H.; Chiang, J.; Ngeow, J. CDKN2A germline alterations and the relevance of genotype-phenotype associations in cancer predisposition. Hered. Cancer Clin. Pract. 2021, 19, 21. [Google Scholar] [CrossRef]
- Murali, R.; Wiesner, T.; Scolyer, R.A. Tumours associated with BAP1 mutations. Pathology 2013, 45, 116–126. [Google Scholar] [CrossRef]
- Gumaste, P.V.; Penn, L.A.; Cymerman, R.M.; Kirchhoff, T.; Polsky, D.; McLellan, B. Skin cancer risk in BRCA1/2 mutation carriers. Br. J. Dermatol. 2015, 172, 1498–1506. [Google Scholar] [CrossRef] [Green Version]
- Tuominen, R.; Engstrom, P.G.; Helgadottir, H.; Eriksson, H.; Unneberg, P.; Kjellqvist, S.; Yang, M.; Linden, D.; Edsgard, D.; Hansson, J.; et al. The role of germline alterations in the DNA damage response genes BRIP1 and BRCA2 in melanoma susceptibility. Genes Chromosomes Cancer 2016, 55, 601–611. [Google Scholar] [CrossRef]
- Debniak, T.; Scott, R.J.; Gorski, B.; Masojc, B.; Kram, A.; Maleszka, R.; Cybulski, C.; Paszkowska-Szczur, K.; Kashyap, A.; Murawa, D.; et al. BRCA1/2 mutations are not a common cause of malignant melanoma in the Polish population. PLoS ONE 2018, 13, e0204768. [Google Scholar] [CrossRef]
- Adams, D.J.; Bishop, D.T.; Robles-Espinoza, C.D. Melanoma predisposition—A limited role for germline BRCA1 and BRCA2 variants. Pigment. Cell Melanoma Res. 2020, 33, 6–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertolotto, C.; Lesueur, F.; Giuliano, S.; Strub, T.; de Lichy, M.; Bille, K.; Dessen, P.; d’Hayer, B.; Mohamdi, H.; Remenieras, A.; et al. A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma. Nature 2011, 480, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; Chen, J.; He, L.; Stiles, B.L. PTEN: Tumor Suppressor and Metabolic Regulator. Front. Endocrinol. (Lausanne) 2018, 9, 338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dratwa, M.; Wysoczanska, B.; Lacina, P.; Kubik, T.; Bogunia-Kubik, K. TERT-Regulation and Roles in Cancer Formation. Front. Immunol. 2020, 11, 589929. [Google Scholar] [CrossRef] [PubMed]
- Goding, C.R.; Arnheiter, H. MITF-the first 25 years. Genes Dev. 2019, 33, 983–1007. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Poulos, R.C.; Reddel, R.R. Role of POT1 in Human Cancer. Cancers 2020, 12, 2739. [Google Scholar] [CrossRef]
- Gandini, S.; Sera, F.; Cattaruzza, M.S.; Pasquini, P.; Abeni, D.; Boyle, P.; Melchi, C.F. Meta-analysis of risk factors for cutaneous melanoma: I. Common and atypical naevi. Eur. J. Cancer 2005, 41, 28–44. [Google Scholar] [CrossRef] [Green Version]
- Gupta, V.; Sharma, V.K. Skin typing: Fitzpatrick grading and others. Clin. Dermatol. 2019, 37, 430–436. [Google Scholar] [CrossRef]
- Gandini, S.; Sera, F.; Cattaruzza, M.S.; Pasquini, P.; Zanetti, R.; Masini, C.; Boyle, P.; Melchi, C.F. Meta-analysis of risk factors for cutaneous melanoma: III. Family history, actinic damage and phenotypic factors. Eur. J. Cancer 2005, 41, 2040–2059. [Google Scholar] [CrossRef]
- Olsen, C.M.; Pandeya, N.; Thompson, B.S.; Dusingize, J.C.; Green, A.C.; Neale, R.E.; Whiteman, D.C.; Study, Q.S. Association between Phenotypic Characteristics and Melanoma in a Large Prospective Cohort Study. J. Investig. Dermatol. 2019, 139, 665–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scherer, D.; Kumar, R. Genetics of pigmentation in skin cancer—A review. Mutat. Res. 2010, 705, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Tagliabue, E.; Gandini, S.; Bellocco, R.; Maisonneuve, P.; Newton-Bishop, J.; Polsky, D.; Lazovich, D.; Kanetsky, P.A.; Ghiorzo, P.; Gruis, N.A.; et al. MC1R variants as melanoma risk factors independent of at-risk phenotypic characteristics: A pooled analysis from the M-SKIP project. Cancer Manag. Res. 2018, 10, 1143–1154. [Google Scholar] [CrossRef] [Green Version]
- Leachman, S.A.; Lucero, O.M.; Sampson, J.E.; Cassidy, P.; Bruno, W.; Queirolo, P.; Ghiorzo, P. Identification, genetic testing, and management of hereditary melanoma. Cancer Metastasis Rev. 2017, 36, 77–90. [Google Scholar] [CrossRef] [Green Version]
- Leachman, S.A.; Carucci, J.; Kohlmann, W.; Banks, K.C.; Asgari, M.M.; Bergman, W.; Bianchi-Scarra, G.; Brentnall, T.; Bressac-de Paillerets, B.; Bruno, W.; et al. Selection criteria for genetic assessment of patients with familial melanoma. J. Am. Acad. Dermatol. 2009, 61, 614.e4–677.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levin, T.; Maehle, L. Uptake of genetic counseling, genetic testing and surveillance in hereditary malignant melanoma (CDKN2A) in Norway. Fam. Cancer 2017, 16, 257–265. [Google Scholar] [CrossRef] [Green Version]
- Masback, A.; Olsson, H.; Westerdahl, J.; Sandberg, T.; Borg, A.; Jonsson, N.; Ingvar, C. Clinical and histopathological features of malignant melanoma in germline CDKN2A mutation families. Melanoma Res. 2002, 12, 549–557. [Google Scholar] [CrossRef]
- Moloney, F.J.; Guitera, P.; Coates, E.; Haass, N.K.; Ho, K.; Khoury, R.; O’Connell, R.L.; Raudonikis, L.; Schmid, H.; Mann, G.J.; et al. Detection of primary melanoma in individuals at extreme high risk: A prospective 5-year follow-up study. JAMA Dermatol. 2014, 150, 819–827. [Google Scholar] [CrossRef] [Green Version]
- Rademaker, M.; Oakley, A. Digital monitoring by whole body photography and sequential digital dermoscopy detects thinner melanomas. J. Prim. Health Care 2010, 2, 268–272. [Google Scholar] [CrossRef]
- Sargen, M.R.; Pfeiffer, R.M.; Elder, D.E.; Yang, X.R.; Goldstein, A.M.; Tucker, M.A. The Impact of Longitudinal Surveillance on Tumor Thickness for Melanoma-Prone Families with and without Pathogenic Germline Variants of CDKN2A and CDK4. Cancer Epidemiol. Biomark. Prev. 2021, 30, 676–681. [Google Scholar] [CrossRef]
- Guitera, P.; Menzies, S.W.; Coates, E.; Azzi, A.; Fernandez-Penas, P.; Lilleyman, A.; Badcock, C.; Schmid, H.; Watts, C.G.; Collgros, H.; et al. Efficiency of Detecting New Primary Melanoma Among Individuals Treated in a High-risk Clinic for Skin Surveillance. JAMA Dermatol. 2021, 157, 521–530. [Google Scholar] [CrossRef] [PubMed]
- Battaglia, A. The Importance of Multidisciplinary Approach in Early Detection of BAP1 Tumor Predisposition Syndrome: Clinical Management and Risk Assessment. Clin. Med. Insights Oncol. 2014, 8, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Carbone, M.; Ferris, L.K.; Baumann, F.; Napolitano, A.; Lum, C.A.; Flores, E.G.; Gaudino, G.; Powers, A.; Bryant-Greenwood, P.; Krausz, T.; et al. BAP1 cancer syndrome: Malignant mesothelioma, uveal and cutaneous melanoma, and MBAITs. J. Transl. Med. 2012, 10, 179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sample, A.; He, Y.Y. Mechanisms and prevention of UV-induced melanoma. Photodermatol. Photoimmunol. Photomed. 2018, 34, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.Q.; Travers, J.B.; Kemp, M.G. Roles of UVA radiation and DNA damage responses in melanoma pathogenesis. Environ. Mol. Mutagen. 2018, 59, 438–460. [Google Scholar] [CrossRef]
- Anna, B.; Blazej, Z.; Jacqueline, G.; Andrew, C.J.; Jeffrey, R.; Andrzej, S. Mechanism of UV-related carcinogenesis and its contribution to nevi/melanoma. Expert Rev. Dermatol. 2007, 2, 451–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu-Smith, F.; Ziogas, A. Age-dependent interaction between sex and geographic ultraviolet index in melanoma risk. J. Am. Acad. Dermatol. 2020, 82, 1102–1108.e3. [Google Scholar] [CrossRef] [Green Version]
- Dennis, L.K.; Vanbeek, M.J.; Beane Freeman, L.E.; Smith, B.J.; Dawson, D.V.; Coughlin, J.A. Sunburns and risk of cutaneous melanoma: Does age matter? A comprehensive meta-analysis. Ann. Epidemiol. 2008, 18, 614–627. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.P.; Chien, A.L. Sun Protective Clothing and Sun Avoidance: The Most Critical Components of Photoprotection in Patients With Melanoma. Dermatol. Surg. 2020, 47, 333–337. [Google Scholar] [CrossRef]
- Dhomen, N.; Mundra, P.A.; Marais, R. Sunglasses to hide behind may also prevent melanoma of the eyes. Br. J. Cancer 2021, 125, 470–472. [Google Scholar] [CrossRef]
- Ghiasvand, R.; Rueegg, C.S.; Weiderpass, E.; Green, A.C.; Lund, E.; Veierod, M.B. Indoor Tanning and Melanoma Risk: Long-Term Evidence From a Prospective Population-Based Cohort Study. Am. J. Epidemiol. 2017, 185, 147–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Truong, K.; Milhem, M.; Pagedar, N.A. Melanoma Characteristics in Patients with a History of UV Tanning Bed Usage. Ann. Otol. Rhinol. Laryngol. 2020, 129, 684–688. [Google Scholar] [CrossRef] [PubMed]
- Karapetyan, L.; Yang, X.; Wang, H.; Sander, C.A.; Moyer, A.; Wilson, M.; Karunamurthy, A.; Kirkwood, J.M. Indoor tanning exposure in association with multiple primary melanoma. Cancer 2021, 127, 560–568. [Google Scholar] [CrossRef] [PubMed]
- Burbidge, T.E.; Bastian, B.C.; Guo, D.; Li, H.; Morris, D.G.; Monzon, J.G.; Leung, G.; Yang, H.; Cheng, T. Association of Indoor Tanning Exposure With Age at Melanoma Diagnosis and BRAF V600E Mutations. J. Natl. Cancer Inst. 2019, 111, 1228–1231. [Google Scholar] [CrossRef] [PubMed]
- Loo, K.; Soliman, I.; Renzetti, M.; Li, T.; Wu, H.; Reddy, S.; Olszanski, A.J.; Farma, J.M. Impact of Sun Exposure and Tanning Patterns on Next-Generation Sequencing Mutations in Melanoma. J. Surg. Res. 2020, 254, 147–153. [Google Scholar] [CrossRef]
- Thomas, N.E.; Edmiston, S.N.; Alexander, A.; Groben, P.A.; Parrish, E.; Kricker, A.; Armstrong, B.K.; Anton-Culver, H.; Gruber, S.B.; From, L.; et al. Association Between NRAS and BRAF Mutational Status and Melanoma-Specific Survival Among Patients With Higher-Risk Primary Melanoma. JAMA Oncol. 2015, 1, 359–368. [Google Scholar] [CrossRef] [Green Version]
- Aubert, P.M.; Seibyl, J.P.; Price, J.L.; Harris, T.S.; Filbey, F.M.; Jacobe, H.; Devous, M.D., Sr.; Adinoff, B. Dopamine efflux in response to ultraviolet radiation in addicted sunbed users. Psychiatry Res. Neuroimaging 2016, 251, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Fell, G.L.; Robinson, K.C.; Mao, J.; Woolf, C.J.; Fisher, D.E. Skin beta-endorphin mediates addiction to UV light. Cell 2014, 157, 1527–1534. [Google Scholar] [CrossRef] [Green Version]
- Iacopetta, K.; Collins-Praino, L.E.; Buisman-Pijlman, F.T.A.; Hutchinson, M.R. Can neuroimmune mechanisms explain the link between ultraviolet light (UV) exposure and addictive behavior? Brain Behav. Immun. 2018, 73, 125–132. [Google Scholar] [CrossRef]
- Slominski, A.T.; Zmijewski, M.A.; Plonka, P.M.; Szaflarski, J.P.; Paus, R. How UV Light Touches the Brain and Endocrine System Through Skin, and Why. Endocrinology 2018, 159, 1992–2007. [Google Scholar] [CrossRef] [Green Version]
- Sanna, M.; Li, X.; Visconti, A.; Freidin, M.B.; Sacco, C.; Ribero, S.; Hysi, P.; Bataille, V.; Han, J.; Falchi, M. Looking for Sunshine: Genetic Predisposition to Sun Seeking in 265,000 Individuals of European Ancestry. J. Investig. Dermatol. 2021, 141, 779–786. [Google Scholar] [CrossRef] [PubMed]
- Erzurumluoglu, A.M.; Liu, M.; Jackson, V.E.; Barnes, D.R.; Datta, G.; Melbourne, C.A.; Young, R.; Batini, C.; Surendran, P.; Jiang, T.; et al. Meta-analysis of up to 622,409 individuals identifies 40 novel smoking behaviour associated genetic loci. Mol. Psychiatry 2020, 25, 2392–2409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karlsson Linner, R.; Biroli, P.; Kong, E.; Meddens, S.F.W.; Wedow, R.; Fontana, M.A.; Lebreton, M.; Tino, S.P.; Abdellaoui, A.; Hammerschlag, A.R.; et al. Genome-wide association analyses of risk tolerance and risky behaviors in over 1 million individuals identify hundreds of loci and shared genetic influences. Nat. Genet. 2019, 51, 245–257. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Jiang, Y.; Wedow, R.; Li, Y.; Brazel, D.M.; Chen, F.; Datta, G.; Davila-Velderrain, J.; McGuire, D.; Tian, C.; et al. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat. Genet. 2019, 51, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Kemeny, L.V.; Robinson, K.C.; Hermann, A.L.; Walker, D.M.; Regan, S.; Yew, Y.W.; Lai, Y.C.; Theodosakis, N.; Rivera, P.D.; Ding, W.; et al. Vitamin D deficiency exacerbates UV/endorphin and opioid addiction. Sci. Adv. 2021, 7, eabe4577. [Google Scholar] [CrossRef]
- Bowers, J.M.; Geller, A.C.; Schofield, E.; Li, Y.; Hay, J.L. Indoor Tanning Trends Among US Adults, 2007–2018. Am. J. Public Health 2020, 110, 823–828. [Google Scholar] [CrossRef]
- Guy, G.P., Jr.; Watson, M.; Seidenberg, A.B.; Hartman, A.M.; Holman, D.M.; Perna, F. Trends in indoor tanning and its association with sunburn among US adults. J. Am. Acad. Dermatol. 2017, 76, 1191–1193. [Google Scholar] [CrossRef] [Green Version]
- Guy, G.P., Jr.; Berkowitz, Z.; Everett Jones, S.; Watson, M.; Richardson, L.C. Prevalence of Indoor Tanning and Association with Sunburn Among Youth in the United States. JAMA Dermatol. 2017, 153, 387–390. [Google Scholar] [CrossRef]
- Montague, M.; Borland, R.; Sinclair, C. Slip! Slop! Slap! and SunSmart, 1980–2000: Skin cancer control and 20 years of population-based campaigning. Health Educ. Behav. 2001, 28, 290–305. [Google Scholar] [CrossRef]
- Gordon, L.G.; Sinclair, C.; Cleaves, N.; Makin, J.K.; Rodriguez-Acevedo, A.J.; Green, A.C. Consequences of banning commercial solaria in 2016 in Australia. Health Policy 2020, 124, 665–670. [Google Scholar] [CrossRef]
- Jeter, J.M.; Bowles, T.L.; Curiel-Lewandrowski, C.; Swetter, S.M.; Filipp, F.V.; Abdel-Malek, Z.A.; Geskin, L.J.; Brewer, J.D.; Arbiser, J.L.; Gershenwald, J.E.; et al. Chemoprevention agents for melanoma: A path forward into phase 3 clinical trials. Cancer 2019, 125, 18–44. [Google Scholar] [CrossRef] [Green Version]
- Chhabra, G.; Ndiaye, M.A.; Garcia-Peterson, L.M.; Ahmad, N. Melanoma Chemoprevention: Current Status and Future Prospects. Photochem. Photobiol. 2017, 93, 975–989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mounessa, J.; Buntinx-Krieg, T.; Qin, R.; Dunnick, C.A.; Dellavalle, R.P. Primary and Secondary Chemoprevention of Malignant Melanoma. Am. J. Clin. Dermatol. 2016, 17, 625–634. [Google Scholar] [CrossRef] [PubMed]
- Sunscreen FAQs. 2021. Available online: https://www.aad.org/media/stats-sunscreen (accessed on 30 June 2021).
- Preventing Skin Cancer. Available online: https://www.cancer.org.au/cancer-information/causes-and-prevention/sun-safety/preventing-skin-cancer (accessed on 30 June 2021).
- Sun Safety. 2021. Available online: https://www.cancerresearchuk.org/about-cancer/causes-of-cancer/sun-uv-and-cancer/sun-safety (accessed on 30 June 2021).
- Farberg, A.S.; Rigel, A.C.; Rigel, D.S. Online Survey of US Dermatologists’ Sunscreen Opinions: Perceptions, Recommendation Factors, and Self-Usage. J. Drugs Dermatol. 2016, 15, 1121–1123. [Google Scholar] [PubMed]
- Jallad, K.N. Chemical characterization of sunscreens composition and its related potential adverse health effects. J. Cosmet. Dermatol. 2017, 16, 353–357. [Google Scholar] [CrossRef]
- Deng, Y.; Ediriwickrema, A.; Yang, F.; Lewis, J.; Girardi, M.; Saltzman, W.M. A sunblock based on bioadhesive nanoparticles. Nat. Mater. 2015, 14, 1278–1285. [Google Scholar] [CrossRef] [Green Version]
- Olsen, C.M.; Wilson, L.F.; Green, A.C.; Biswas, N.; Loyalka, J.; Whiteman, D.C. How many melanomas might be prevented if more people applied sunscreen regularly? Br. J. Dermatol. 2018, 178, 140–147. [Google Scholar] [CrossRef]
- Green, A.C.; Williams, G.M.; Logan, V.; Strutton, G.M. Reduced melanoma after regular sunscreen use: Randomized trial follow-up. J. Clin. Oncol. 2011, 29, 257–263. [Google Scholar] [CrossRef] [Green Version]
- Ghiasvand, R.; Weiderpass, E.; Green, A.C.; Lund, E.; Veierod, M.B. Sunscreen Use and Subsequent Melanoma Risk: A Population-Based Cohort Study. J. Clin. Oncol. 2016, 34, 3976–3983. [Google Scholar] [CrossRef] [Green Version]
- Watts, C.G.; Drummond, M.; Goumas, C.; Schmid, H.; Armstrong, B.K.; Aitken, J.F.; Jenkins, M.A.; Giles, G.G.; Hopper, J.L.; Mann, G.J.; et al. Sunscreen Use and Melanoma Risk Among Young Australian Adults. JAMA Dermatol. 2018, 154, 1001–1009. [Google Scholar] [CrossRef]
- Silva, E.S.D.; Tavares, R.; Paulitsch, F.D.S.; Zhang, L. Use of sunscreen and risk of melanoma and non-melanoma skin cancer: A systematic review and meta-analysis. Eur. J. Dermatol. 2018, 28, 186–201. [Google Scholar] [CrossRef] [PubMed]
- Rueegg, C.S.; Stenehjem, J.S.; Egger, M.; Ghiasvand, R.; Cho, E.; Lund, E.; Weiderpass, E.; Green, A.C.; Veierod, M.B. Challenges in assessing the sunscreen-melanoma association. Int. J. Cancer 2019, 144, 2651–2668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Autier, P.; Boniol, M.; Dore, J.F. Sunscreen use and increased duration of intentional sun exposure: Still a burning issue. Int. J. Cancer 2007, 121, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Heerfordt, I.M.; Torsnes, L.R.; Philipsen, P.A.; Wulf, H.C. Photoprotection by sunscreen depends on time spent on application. Photodermatol. Photoimmunol. Photomed. 2018, 34, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Heerfordt, I.M.; Philipsen, P.A.; Wulf, H.C. A Handful of Sunscreen for Whole-Body Application. Adv. Exp. Med. Biol. 2020, 1268, 381–385. [Google Scholar] [CrossRef] [PubMed]
- Jovanovic, Z.; Schornstein, T.; Sutor, A.; Neufang, G.; Hagens, R. Conventional sunscreen application does not lead to sufficient body coverage. Int. J. Cosmet. Sci. 2017, 39, 550–555. [Google Scholar] [CrossRef]
- Sharma, T.R.; Yeh, V.; Debanne, S.M.; Bordeaux, J.S. Association Between Perceived Skin Cancer Risk Reduction and Sunscreen Use. Dermatol. Surg. 2020, 46, 885–889. [Google Scholar] [CrossRef]
- Schneiderbanger, C.K.; Schuler, G.; Heinzerling, L.; Kirchberger, M.C. Characterization of tanning behavior assessed via online survey: Attitudes, habits, and preventive measures with focus on sunscreen use. PhotoDermatol. Photoimmunol. Photomed. 2019, 35, 268–274. [Google Scholar] [CrossRef]
- Ford, H.; Herbert, J.; Horsham, C.; Wall, A.; Hacker, E. Internet of Things Smart Sunscreen Station: Descriptive Proof-of-Concept Study. J. Med. Internet Res. 2020, 22, e17079. [Google Scholar] [CrossRef]
- Hacker, E.; Horsham, C.; Ford, H.; Hartel, G.; Olsen, C.M.; Pandeya, N.; Janda, M. UV detection stickers can assist people to reapply sunscreen. Prev. Med. 2019, 124, 67–74. [Google Scholar] [CrossRef]
- Horsham, C.; Ford, H.; Hacker, E. Promoting sunscreen use in adolescents playing outdoor sports using UV detection stickers. Prev. Med. Rep. 2020, 19, 101166. [Google Scholar] [CrossRef] [PubMed]
- Robinson, J.K.; Durst, D.A.; Gray, E.; Kwasny, M.; Heo, S.Y.; Banks, A.; Rogers, J.A. Sun exposure reduction by melanoma survivors with wearable sensor providing real-time UV exposure and daily text messages with structured goal setting. Arch. Dermatol. Res. 2020, 313, 685–694. [Google Scholar] [CrossRef] [PubMed]
- Robinson, J.K.; Patel, S.; Heo, S.Y.; Gray, E.; Lim, J.; Kwon, K.; Christiansen, Z.; Model, J.; Trueb, J.; Banks, A.; et al. Real-Time UV Measurement With a Sun Protection System for Warning Young Adults About Sunburn: Prospective Cohort Study. JMIR mHealth uHealth 2021, 9, e25895. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.C.; Martin, A.J.; Choy, B.; Fernandez-Penas, P.; Dalziell, R.A.; McKenzie, C.A.; Scolyer, R.A.; Dhillon, H.M.; Vardy, J.L.; Kricker, A.; et al. A Phase 3 Randomized Trial of Nicotinamide for Skin-Cancer Chemoprevention. N. Engl. J. Med. 2015, 373, 1618–1626. [Google Scholar] [CrossRef] [Green Version]
- Topical Myristyl Nicotinate Cream on the Skin of Healthy Volunteers; National Library of Medicine: Bethesda, MD, USA; Available online: https://www.smartpatients.com/trials/NCT00619060 (accessed on 28 June 2021).
- An, K.P.; Athar, M.; Tang, X.; Katiyar, S.K.; Russo, J.; Beech, J.; Aszterbaum, M.; Kopelovich, L.; Epstein, E.H., Jr.; Mukhtar, H.; et al. Cyclooxygenase-2 expression in murine and human nonmelanoma skin cancers: Implications for therapeutic approaches. Photochem. Photobiol. 2002, 76, 73–80. [Google Scholar] [CrossRef]
- Li, S.; Liu, Y.; Zeng, Z.; Peng, Q.; Li, R.; Xie, L.; Qin, X.; Zhao, J. Association between non-steroidal anti-inflammatory drug use and melanoma risk: A meta-analysis of 13 studies. Cancer Causes Control 2013, 24, 1505–1516. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Xie, Y.; Yang, G.; Jian, C.; Deng, Y. Nonsteroidal anti-inflammatory drug use and the risk of melanoma: A meta-analysis. Eur. J. Cancer Prev. 2014, 23, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Cheng, Y.; Luo, R.C.; Li, A.M. Aspirin for the primary prevention of skin cancer: A meta-analysis. Oncol. Lett. 2015, 9, 1073–1080. [Google Scholar] [CrossRef] [Green Version]
- Elmets, C.A.; Viner, J.L.; Pentland, A.P.; Cantrell, W.; Lin, H.Y.; Bailey, H.; Kang, S.; Linden, K.G.; Heffernan, M.; Duvic, M.; et al. Chemoprevention of nonmelanoma skin cancer with celecoxib: A randomized, double-blind, placebo-controlled trial. J. Natl. Cancer Inst. 2010, 102, 1835–1844. [Google Scholar] [CrossRef]
- Tang, J.Y.; Aszterbaum, M.; Athar, M.; Barsanti, F.; Cappola, C.; Estevez, N.; Hebert, J.; Hwang, J.; Khaimskiy, Y.; Kim, A.; et al. Basal cell carcinoma chemoprevention with nonsteroidal anti-inflammatory drugs in genetically predisposed PTCH1+/- humans and mice. Cancer Prev. Res. (Phila) 2010, 3, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Curiel-Lewandrowski, C.; Swetter, S.M.; Einspahr, J.G.; Hsu, C.H.; Nagle, R.; Sagerman, P.; Tangrea, J.; Parnes, H.; Alberts, D.S.; Chow, H.H. Randomized, double-blind, placebo-controlled trial of sulindac in individuals at risk for melanoma: Evaluation of potential chemopreventive activity. Cancer 2012, 118, 5848–5856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeter, J.M.; Curiel-Lewandrowski, C.; Stratton, S.P.; Myrdal, P.B.; Warneke, J.A.; Einspahr, J.G.; Bartels, H.G.; Yozwiak, M.; Bermudez, Y.; Hu, C.; et al. Phase IIB Randomized Study of Topical Difluoromethylornithine and Topical Diclofenac on Sun-Damaged Skin of the Forearm. Cancer Prev. Res. (Phila) 2016, 9, 128–134. [Google Scholar] [CrossRef] [Green Version]
- Varedi, A.; Rahman, H.; Kumar, D.; Catrow, J.L.; Cox, J.E.; Liu, T.; Florell, S.R.; Boucher, K.M.; Okwundu, N.; Burnett, W.J.; et al. ASA Suppresses PGE2 in Plasma and Melanocytic Nevi of Human Subjects at Increased Risk for Melanoma. Pharmaceuticals 2020, 13, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monteiro, A.F.; Rato, M.; Martins, C. Drug-induced photosensitivity: Photoallergic and phototoxic reactions. Clin. Dermatol. 2016, 34, 571–581. [Google Scholar] [CrossRef] [PubMed]
- O’Gorman, S.M.; Murphy, G.M. Photosensitizing medications and photocarcinogenesis. Photodermatol. Photoimmunol. Photomed. 2014, 30, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Yu, P.; Lin, S.; Li, Q.; Fang, Z.; Huang, Z. The association between nonsteroidal anti-inflammatory drugs and skin cancer: Different responses in American and European populations. Pharmacol. Res. 2020, 152, 104499. [Google Scholar] [CrossRef]
- Siiskonen, S.J.; Koomen, E.R.; Visser, L.E.; Herings, R.M.; Guchelaar, H.J.; Stricker, B.H.; Nijsten, T.E. Exposure to phototoxic NSAIDs and quinolones is associated with an increased risk of melanoma. Eur. J. Clin. Pharmacol. 2013, 69, 1437–1444. [Google Scholar] [CrossRef]
- Encinas, S.; Bosca, F.; Miranda, M.A. Phototoxicity associated with diclofenac: A photophysical, photochemical, and photobiological study on the drug and its photoproducts. Chem. Res. Toxicol. 1998, 11, 946–952. [Google Scholar] [CrossRef]
- Yazici, A.C.; Baz, K.; Ikizoglu, G.; Kokturk, A.; Uzumlu, H.; Tataroglu, C. Celecoxib-induced photoallergic drug eruption. Int. J. Dermatol. 2004, 43, 459–461. [Google Scholar] [CrossRef]
- Gonçalo, M.; Giménez-Arnau, A.M. Drug Photosensitivity. In European Handbook of Dermatological Treatments; Katsambas, A.D., Lotti, T.M., Dessinioti, C., D’Erme, A.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 233–251. [Google Scholar] [CrossRef]
- George, E.A.; Baranwal, N.; Kang, J.H.; Qureshi, A.A.; Drucker, A.M.; Cho, E. Photosensitizing Medications and Skin Cancer: A Comprehensive Review. Cancers 2021, 13, 2344. [Google Scholar] [CrossRef]
- Kraemer, K.H.; DiGiovanna, J.J.; Moshell, A.N.; Tarone, R.E.; Peck, G.L. Prevention of skin cancer in xeroderma pigmentosum with the use of oral isotretinoin. N. Engl. J. Med. 1988, 318, 1633–1637. [Google Scholar] [CrossRef]
- Levine, N.; Moon, T.E.; Cartmel, B.; Bangert, J.L.; Rodney, S.; Dong, Q.; Peng, Y.M.; Alberts, D.S. Trial of retinol and isotretinoin in skin cancer prevention: A randomized, double-blind, controlled trial. Southwest Skin Cancer Prevention Study Group. Cancer Epidemiol. Biomark. Prev. 1997, 6, 957–961. [Google Scholar]
- Kadakia, K.C.; Barton, D.L.; Loprinzi, C.L.; Sloan, J.A.; Otley, C.C.; Diekmann, B.B.; Novotny, P.J.; Alberts, S.R.; Limburg, P.J.; Pittelkow, M.R. Randomized controlled trial of acitretin versus placebo in patients at high-risk for basal cell or squamous cell carcinoma of the skin (North Central Cancer Treatment Group Study 969251). Cancer 2012, 118, 2128–2137. [Google Scholar] [CrossRef] [PubMed]
- Weinstock, M.A.; Bingham, S.F.; Digiovanna, J.J.; Rizzo, A.E.; Marcolivio, K.; Hall, R.; Eilers, D.; Naylor, M.; Kirsner, R.; Kalivas, J.; et al. Tretinoin and the prevention of keratinocyte carcinoma (Basal and squamous cell carcinoma of the skin): A veterans affairs randomized chemoprevention trial. J. Investig. Dermatol. 2012, 132, 1583–1590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cassidy, P.B.; Liu, T.; Florell, S.R.; Honeggar, M.; Leachman, S.A.; Boucher, K.M.; Grossman, D. A Phase II Randomized Placebo-Controlled Trial of Oral N-acetylcysteine for Protection of Melanocytic Nevi against UV-Induced Oxidative Stress In Vivo. Cancer Prev. Res. (Phila) 2017, 10, 36–44. [Google Scholar] [CrossRef] [Green Version]
- Scott, J.F.; Das, L.M.; Ahsanuddin, S.; Qiu, Y.; Binko, A.M.; Traylor, Z.P.; Debanne, S.M.; Cooper, K.D.; Boxer, R.; Lu, K.Q. Oral Vitamin D Rapidly Attenuates Inflammation from Sunburn: An Interventional Study. J. Investig. Dermatol. 2017, 137, 2078–2086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez, D.P.; Maymone, M.B.C.; McLean, E.O.; Kennedy, K.F.; Sahni, D.; Secemsky, E.A.; Vashi, N.A. Racial and ethnic disparities in melanoma awareness: A cross-sectional survey. J. Am. Acad. Dermatol. 2020, 83, 1098–1103. [Google Scholar] [CrossRef]
- Jacobsen, A.A.; Galvan, A.; Lachapelle, C.C.; Wohl, C.B.; Kirsner, R.S.; Strasswimmer, J. Defining the Need for Skin Cancer Prevention Education in Uninsured, Minority, and Immigrant Communities. JAMA Dermatol. 2016, 152, 1342–1347. [Google Scholar] [CrossRef] [Green Version]
- Seite, S.; Del Marmol, V.; Moyal, D.; Friedman, A.J. Public primary and secondary skin cancer prevention, perceptions and knowledge: An international cross-sectional survey. J. Eur. Acad. Dermatol. Venereol. 2017, 31, 815–820. [Google Scholar] [CrossRef] [Green Version]
- Goldenberg, A.; Vujic, I.; Sanlorenzo, M.; Ortiz-Urda, S. Melanoma risk perception and prevention behavior among African-Americans: The minority melanoma paradox. Clin. Cosmet. Investig. Dermatol. 2015, 8, 423–429. [Google Scholar] [CrossRef] [Green Version]
- Korta, D.Z.; Saggar, V.; Wu, T.P.; Sanchez, M. Racial differences in skin cancer awareness and surveillance practices at a public hospital dermatology clinic. J. Am. Acad. Dermatol. 2014, 70, 312–317. [Google Scholar] [CrossRef] [PubMed]
- Kasparian, N.A.; Branstrom, R.; Chang, Y.M.; Affleck, P.; Aspinwall, L.G.; Tibben, A.; Azizi, E.; Baron-Epel, O.; Battistuzzi, L.; Bruno, W.; et al. Skin examination behavior: The role of melanoma history, skin type, psychosocial factors, and region of residence in determining clinical and self-conducted skin examination. Arch. Dermatol. 2012, 148, 1142–1151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Force, U.S.P.S.T.; Grossman, D.C.; Curry, S.J.; Owens, D.K.; Barry, M.J.; Caughey, A.B.; Davidson, K.W.; Doubeni, C.A.; Epling, J.W., Jr.; Kemper, A.R.; et al. Behavioral Counseling to Prevent Skin Cancer: US Preventive Services Task Force Recommendation Statement. JAMA 2018, 319, 1134–1142. [Google Scholar] [CrossRef]
- Glanz, K.; Saraiya, M.; Wechsler, H.; Centers for Disease, C.; Prevention. Guidelines for school programs to prevent skin cancer. MMWR Recomm. Rep. 2002, 51, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Roman, C.J.; Guan, X.; Barnholtz-Sloan, J.S.; Xu, J.; Bordeaux, J.S. A Trial Online Educational Melanoma Program Aimed at the Hispanic Population Improves Knowledge and Behaviors. Dermatol. Surg. 2016, 42, 672–676. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.A.; Cohen, L.E.; Tijerina, J.D. The impact of monthly campaigns and other high-profile media coverage on public interest in 13 malignancies: A Google Trends analysis. Ecancermedicalscience 2020, 14, 1154. [Google Scholar] [CrossRef]
- Grewal, S.K.; Reddy, V.; Tomz, A.; Lester, J.; Linos, E.; Lee, P.K. Skin Cancer in Skin of Color: A Cross-Sectional Study Investigating Gaps in Prevention Campaigns on Social Media. J. Am. Acad. Dermatol. 2020. in Press. [Google Scholar] [CrossRef]
- Kovalyshyn, I.; Dusza, S.W.; Siamas, K.; Halpern, A.C.; Argenziano, G.; Marghoob, A.A. The impact of physician screening on melanoma detection. Arch. Dermatol. 2011, 147, 1269–1275. [Google Scholar] [CrossRef] [Green Version]
- Howlader, N.N.A.; Krapcho, M.; Miller, D.; Brest, A.; Yu, M.; Ruhl, J.; Tatalovich, Z.; Mariotto, A.; Lewis, D.R.; Chen, H.S.; et al. (Eds.) SEER Cancer Statistics Review (CSR) 1975–2018. 2021. Available online: https://seer.cancer.gov/csr/1975_2018/ (accessed on 30 June 2021).
- Straker, R.J., 3rd; Song, Y.; Shannon, A.B.; Chu, E.Y.; Miura, J.T.; Ming, M.E.; Karakousis, G.C. Association of the Affordable Care Act’s Medicaid expansion with the diagnosis and treatment of clinically localized melanoma: A National Cancer Database study. J. Am. Acad. Dermatol. 2021, 84, 1628–1635. [Google Scholar] [CrossRef]
- Takvorian, S.U.; Oganisian, A.; Mamtani, R.; Mitra, N.; Shulman, L.N.; Bekelman, J.E.; Werner, R.M. Association of Medicaid Expansion Under the Affordable Care Act With Insurance Status, Cancer Stage, and Timely Treatment Among Patients With Breast, Colon, and Lung Cancer. JAMA Netw. Open 2020, 3, e1921653. [Google Scholar] [CrossRef] [Green Version]
- Escobedo, L.A.; Crew, A.; Eginli, A.; Peng, D.; Cousineau, M.R.; Cockburn, M. The role of spatially-derived access-to-care characteristics in melanoma prevention and control in Los Angeles county. Health Place 2017, 45, 160–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aneja, S.; Aneja, S.; Bordeaux, J.S. Association of increased dermatologist density with lower melanoma mortality. Arch. Dermatol. 2012, 148, 174–178. [Google Scholar] [CrossRef] [Green Version]
- Glazer, A.M.; Farberg, A.S.; Winkelmann, R.R.; Rigel, D.S. Analysis of Trends in Geographic Distribution and Density of US Dermatologists. JAMA Dermatol. 2017, 153, 322–325. [Google Scholar] [CrossRef] [PubMed]
- Giavina-Bianchi, M.; Santos, A.P.; Cordioli, E. Teledermatology reduces dermatology referrals and improves access to specialists. EClinicalMedicine 2020, 29-30, 100641. [Google Scholar] [CrossRef]
- Arzberger, E.; Curiel-Lewandrowski, C.; Blum, A.; Chubisov, D.; Oakley, A.; Rademaker, M.; Soyer, H.; Hofmann-Wellenhof, R. Teledermoscopy in High-risk Melanoma Patients: A Comparative Study of Face-to-face and Teledermatology Visits. Acta Derm.-Venereol. 2016, 96, 779–783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrandiz, L.; Ojeda-Vila, T.; Corrales, A.; Martin-Gutierrez, F.J.; Ruiz-de-Casas, A.; Galdeano, R.; Alvarez-Torralba, I.; Sanchez-Ibanez, F.; Dominguez-Toro, J.M.; Encina, F.; et al. Internet-based skin cancer screening using clinical images alone or in conjunction with dermoscopic images: A randomized teledermoscopy trial. J. Am. Acad. Dermatol. 2017, 76, 676–682. [Google Scholar] [CrossRef]
- Bandic, J.; Kovacevic, S.; Karabeg, R.; Lazarov, A.; Opric, D. Teledermoscopy for Skin Cancer Prevention: A Comparative Study of Clinical and Teledermoscopic Diagnosis. Acta Inform. Med. 2020, 28, 37–41. [Google Scholar] [CrossRef]
- Markun, S.; Scherz, N.; Rosemann, T.; Tandjung, R.; Braun, R.P. Mobile teledermatology for skin cancer screening: A diagnostic accuracy study. Medicine (Baltimore) 2017, 96, e6278. [Google Scholar] [CrossRef] [Green Version]
- Phillips, M.; Marsden, H.; Jaffe, W.; Matin, R.N.; Wali, G.N.; Greenhalgh, J.; McGrath, E.; James, R.; Ladoyanni, E.; Bewley, A.; et al. Assessment of Accuracy of an Artificial Intelligence Algorithm to Detect Melanoma in Images of Skin Lesions. JAMA Netw. Open 2019, 2, e1913436. [Google Scholar] [CrossRef] [Green Version]
- Ngoo, A.; Finnane, A.; McMeniman, E.; Tan, J.M.; Janda, M.; Soyer, H.P. Efficacy of smartphone applications in high-risk pigmented lesions. Australas. J. Dermatol. 2018, 59, e175–e182. [Google Scholar] [CrossRef] [Green Version]
- Walter, F.M.; Pannebakker, M.M.; Barclay, M.E.; Mills, K.; Saunders, C.L.; Murchie, P.; Corrie, P.; Hall, P.; Burrows, N.; Emery, J.D. Effect of a Skin Self-monitoring Smartphone Application on Time to Physician Consultation Among Patients With Possible Melanoma: A Phase 2 Randomized Clinical Trial. JAMA Netw. Open 2020, 3, e200001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seiverling, E.V.; Li, D.; Stevens, K.; Cyr, P.; Dorr, G.; Ahrns, H. Distance Learning and Spaced Review to Complement Dermoscopy Training for Primary Care. Dermatol. Pract. Concept. 2021, 11, e2021030. [Google Scholar] [CrossRef] [PubMed]
- Holmes, A.N.; Chansky, P.B.; Simpson, C.L. Teledermatology Consultation Can Optimize Treatment of Cutaneous Disease by Nondermatologists in Under-Resourced Clinics. Telemed. J. e-Health 2020, 26, 1284–1290. [Google Scholar] [CrossRef] [PubMed]
- Seiverling, E.V.; Ahrns, H.T.; Greene, A.; Butt, M.; Yelamos, O.; Dusza, S.W.; Marghoob, A.A. Teaching Benign Skin Lesions as a Strategy to Improve the Triage Amalgamated Dermoscopic Algorithm (TADA). J. Am. Board Fam. Med. 2019, 32, 96–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, J.K.; Jain, N.; Marghoob, A.A.; McGaghie, W.; MacLean, M.; Gerami, P.; Hultgren, B.; Turrisi, R.; Mallett, K.; Martin, G.J. A Randomized Trial on the Efficacy of Mastery Learning for Primary Care Provider Melanoma Opportunistic Screening Skills and Practice. J. Gen. Intern. Med. 2018, 33, 855–862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goddard, L.; Yorozuya, L.; Hirokane, J. Art of prevention: The importance of melanoma surveillance. Int. J. Womens Dermatol. 2020, 6, 257–259. [Google Scholar] [CrossRef]
- Gershenwald, J.E.; Scolyer, R.A. Melanoma Staging: American Joint Committee on Cancer (AJCC) 8th Edition and Beyond. Ann. Surg. Oncol. 2018, 25, 2105–2110. [Google Scholar] [CrossRef]
- Trager, M.H.; Queen, D.; Samie, F.H.; Carvajal, R.D.; Bickers, D.R.; Geskin, L.J. Advances in Prevention and Surveillance of Cutaneous Malignancies. Am. J. Med. 2020, 133, 417–423. [Google Scholar] [CrossRef]
- Dubbini, N.; Puddu, A.; Salimbeni, G.; Malloggi, S.; Gandini, D.; Massei, P.; Ferrauto, G.; Rubino, T.; Ricci, L.; Menchini, G.; et al. Melanoma Prevention: Comparison of Different Screening Methods for the Selection of a High Risk Population. Int. J. Environ. Res. Public Health 2021, 18, 1953. [Google Scholar] [CrossRef]
- Mills, K.; Emery, J.; Lantaff, R.; Radford, M.; Pannebakker, M.; Hall, P.; Burrows, N.; Williams, K.; Saunders, C.L.; Murchie, P.; et al. Protocol for the melatools skin self-monitoring trial: A phase II randomised controlled trial of an intervention for primary care patients at higher risk of melanoma. BMJ Open 2017, 7, e017934. [Google Scholar] [CrossRef]
- Wainstein, A.; Algarra, S.M.; Bastholt, L.; Cinat, G.; Demidov, L.; Grob, J.J.; Guo, J.; Hersey, P.; Espinosa, E.; Schachter, J.; et al. Melanoma early detection and awareness: How countries developing melanoma awareness programs could benefit from melanoma-proficient countries. Am. J. Ther. 2015, 22, 37–43. [Google Scholar] [CrossRef]
- Young, A.T.; Vora, N.B.; Cortez, J.; Tam, A.; Yeniay, Y.; Afifi, L.; Yan, D.; Nosrati, A.; Wong, A.; Johal, A.; et al. The role of technology in melanoma screening and diagnosis. Pigment Cell Melanoma Res. 2021, 34, 288–300. [Google Scholar] [CrossRef] [PubMed]
- O’Leary, M.A.; Wang, S.J. Epidemiology and Prevention of Cutaneous Cancer. Otolaryngol. Clin. N. Am. 2021, 54, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Boniol, M.; Autier, P.; Gandini, S. Melanoma mortality following skin cancer screening in Germany. BMJ Open 2015, 5, e008158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferris, L.K.; Saul, M.I.; Lin, Y.; Ding, F.; Weinstock, M.A.; Geller, A.C.; Yuan, J.M.; Neuren, E.; Maddukuri, S.; Solano, F.X.; et al. A Large Skin Cancer Screening Quality Initiative: Description and First-Year Outcomes. JAMA Oncol. 2017, 3, 1112–1115. [Google Scholar] [CrossRef]
- Hornung, A.; Steeb, T.; Wessely, A.; Brinker, T.J.; Breakell, T.; Erdmann, M.; Berking, C.; Heppt, M.V. The Value of Total Body Photography for the Early Detection of Melanoma: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 1726. [Google Scholar] [CrossRef]
- Fried, L.; Tan, A.; Bajaj, S.; Liebman, T.N.; Polsky, D.; Stein, J.A. Technological advances for the detection of melanoma: Advances in diagnostic techniques. J. Am. Acad. Dermatol. 2020, 83, 983–992. [Google Scholar] [CrossRef]
- Waddell, A.; Star, P.; Guitera, P. Advances in the use of reflectance confocal microscopy in melanoma. Melanoma Manag. 2018, 5, MMT04. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.; Chen, J.; Zhang, Z.; Li, K.; Li, J.; Yu, Z.; Zhang, Y. Non-invasive optical methods for melanoma diagnosis. Photodiagn. Photodyn. Ther. 2021, 34, 102266. [Google Scholar] [CrossRef]
- Wan, B.; Ganier, C.; Du-Harpur, X.; Harun, N.; Watt, F.M.; Patalay, R.; Lynch, M.D. Applications and future directions for optical coherence tomography in dermatology. Br. J. Dermatol. 2021, 184, 1014–1022. [Google Scholar] [CrossRef]
- Leupold, D.; Pfeifer, L.; Hofmann, M.; Forschner, A.; Wessler, G.; Haenssle, H. From Melanocytes to Melanoma Cells: Characterization of the Malignant Transformation by Four Distinctly Different Melanin Fluorescence Spectra (Review). Int. J. Mol. Sci. 2021, 22, 5265. [Google Scholar] [CrossRef] [PubMed]
- Zakhem, G.A.; Fakhoury, J.W.; Motosko, C.C.; Ho, R.S. Characterizing the role of dermatologists in developing artificial intelligence for assessment of skin cancer: A systematic review. J. Am. Acad. Dermatol. 2020, in press. [Google Scholar] [CrossRef] [PubMed]
- Maron, R.C.; Weichenthal, M.; Utikal, J.S.; Hekler, A.; Berking, C.; Hauschild, A.; Enk, A.H.; Haferkamp, S.; Klode, J.; Schadendorf, D.; et al. Systematic outperformance of 112 dermatologists in multiclass skin cancer image classification by convolutional neural networks. Eur. J. Cancer 2019, 119, 57–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017, 542, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Sondermann, W.; Utikal, J.S.; Enk, A.H.; Schadendorf, D.; Klode, J.; Hauschild, A.; Weichenthal, M.; French, L.E.; Berking, C.; Schilling, B.; et al. Prediction of melanoma evolution in melanocytic nevi via artificial intelligence: A call for prospective data. Eur. J. Cancer 2019, 119, 30–34. [Google Scholar] [CrossRef]
- Nelson, C.A.; Perez-Chada, L.M.; Creadore, A.; Li, S.J.; Lo, K.; Manjaly, P.; Pournamdari, A.B.; Tkachenko, E.; Barbieri, J.S.; Ko, J.M.; et al. Patient Perspectives on the Use of Artificial Intelligence for Skin Cancer Screening: A Qualitative Study. JAMA Dermatol. 2020, 156, 501–512. [Google Scholar] [CrossRef] [PubMed]
- Adamson, A.S.; Smith, A. Machine Learning and Health Care Disparities in Dermatology. JAMA Dermatol. 2018, 154, 1247–1248. [Google Scholar] [CrossRef]
Heritable Trait/Risk Factor | Risk Ratio | 95% Confidence Interval |
---|---|---|
Common Nevi | ||
0–15 | Reference | N/A |
16–40 | 1.47 | (1.36, 1.59) |
41–60 | 2.24 | (1.90, 2.64) |
61–80 | 3.26 | (2.55, 4.15) |
81–100 | 4.74 | (3.44, 6.53) |
101–120 | 6.89 | (4.63, 10.25) |
Atypical Nevi | ||
0 | Reference | N/A |
1 | 1.60 | (1.38, 1.85) |
2 | 2.56 | (1.91, 3.43) |
3 | 4.10 | (2.64, 6.35) |
4 | 6.55 | (3.65, 11.75) |
5 | 10.49 | (5.05, 21.76) |
Phototype | ||
IV | Reference | N/A |
III | 1.77 | (1.23, 2.56) |
II | 1.84 | (1.43, 2.36) |
I | 2.09 | (1.67, 2.58) |
Eye Color | ||
Dark | Reference | N/A |
Blue | 1.47 | (1.28, 1.69) |
Green | 1.61 | (1.06, 2.45) |
Hazel | 1.52 | (1.26, 1.83) |
Hair Color | ||
Dark | Reference | N/A |
Red | 3.64 | (2.56, 5.37) |
Blonde | 1.96 | (1.41, 2.74) |
Light Brown | 1.62 | (1.11, 2.34) |
Family History | ||
No | Reference | N/A |
Yes | 1.74 | (1.41, 2.14) |
Chemopreventive Agent | Proposed Mechanism of Action | Clinical Data | Evidence for Clinical Efficacy |
---|---|---|---|
Nicotinamide (oral) | Antioxidant, antiproliferative, reduces photoimmunosuppression | Chen et al., 2015—No change in incidence of melanomas. Decreased number of keratinocytic carcinomas (23% fewer) and actinic keratoses (13% fewer) than the placebo group. | Efficacy limited to keratinocyte carcinomas |
Myristyl Nicotinate (topical) | Enhances skin cell turnover and epidermal differentiation | NCT00619060—Did not achieve safety endpoint in phase I clinical trial. | No demonstrable clinical efficacy |
Celecoxib (oral) | Decrease potentially oncogenic prostaglandin synthesis and release | Elmets et al., 2010—43% lower risk of developing keratinocyte carcinomas in patients treated with celecoxib versus placebo. Tang et al., 2010—20% increase in annual basal cell carcinoma burden in treated patients versus 50% increase in placebo for patients with basal cell nevus syndrome. | Efficacy limited to keratinocyte carcinomas |
Sulindac (oral) | Decrease potentially oncogenic prostaglandin synthesis and release | Lewandrowski et al., 2012—Sulindac metabolites were detected in atypical nevi; however, no significant changes in apoptosis or vascular endothelial growth factor A expression were noted. | No demonstrable clinical efficacy |
Diclofenac (topical) | Decrease potentially oncogenic prostaglandin synthesis and release | Jeter et al., 2016—Diclofenac with or without DFMO increased markers of cutaneous inflammation (karyometric average nuclear abnormality (ANA)). | No demonstrable clinical efficacy |
Aspirin (oral) | Decrease potentially oncogenic prostaglandin synthesis and release | Varedi et al., 2020—Dose reduction in prostaglandin E2 levels in melanocytic nevi after administration of aspirin for one week (50–70% decrease for 325mg cohort, 35–50% decrease for 81 mg cohorts). | Early clinical evidence of molecular effect |
Isotretinoin (oral) | Anti-inflammatory and antiproliferative | Kraemer et al., 1988—Daily oral isotretinoin for two years reduced the incidence of new skin cancers in patients with xeroderma pigmentosum by 63%. Levine et al., 1997—Daily isotretinoin for three years resulted in no difference in keratinocyte carcinoma incidence compared to placebo in patients with a history of multiple keratinocyte carcinomas. | Efficacy limited to keratinocyte carcinomas |
Acitretin (oral) | Anti-inflammatory and antiproliferative | Kadakia et al., 2012—Acitretin 25 mg orally 5 days per week for two years produced no significant difference in keratinocyte carcinoma incidence in the treatment arm versus placebo. | No demonstrable clinical efficacy |
Tretinoin (topical) | Anti-inflammatory and antiproliferative | Weinstock et al., 2012—Tretinoin twice daily for 1.5-5.5 years produced no significant difference in keratinocyte incidence compared to placebo. | No demonstrable clinical efficacy |
N-acetylcysteine (NAC) (oral) | Antioxidant | Cassidy et al., 2017—No significant difference in markers of UV-induced oxidative stress between NAC-treated and placebo groups. | No demonstrable clinical efficacy |
Vitamin D (oral) | Antiapoptotic, photoprotective, reduces photoimmunosuppression | Scott et al., 2017—Patients treated with Vitamin D had decreased inflammatory changes following experimental sunburn. | Early clinical evidence of molecular effect |
Statins (oral) | Antiproliferative, inhibition of the Ras signaling pathway | Linden et al., 2014—Lovastatin 40mg daily produced no significant differences in histopathologic markers of atypia, clinical atypia, nevus number, or molecular biomarkers of oncogenesis in atypical nevi between the treatment arm and placebo. | No demonstrable clinical efficacy |
T4 endonucleases (topical) | Enables repair of dipyrimidine photo-mutations | Yarosh et al., 2001—T4N5 liposome lotion decreased the annual incidence rate of actinic keratoses and basal cell carcinomas in patients with xeroderma pigmentosa. Stoddard et al., 2017- Significant reduction in the number of new actinic keratoses observed in treated patients, persisting 12 weeks after treatment. | Efficacy limited to keratinocyte carcinomas |
Difluoromethylornithine (DFMO) (oral) | Decreases epithelial polyamine levels (potentially tumorigenic) | Bailey et al., 2010—Orally dosed DFMO (500 mg/m2/day) produced no significant difference in total new keratinocyte carcinomas versus placebo over 4 to 5 years. | No demonstrable clinical efficacy |
Grape Polyphenols (oral) | Photoprotective | Oak et al., 2021—California table grape powder (25 g, 3x per day) for two weeks significantly increased MED from baseline levels. | Early clinical efficacy in experimental sunburn models |
Lycopene (oral) | Antioxidant | Rizwan et al., 2011—16-mg lycopene daily for 12 weeks versus control produced a significant increase in MED compared to placebo, as well as a reduction in matrix metalloprotease-1 expression and mtDNA 3895-bp deletions, as well as an increase in procollagen deposition. | Early clinical efficacy in experimental sunburn models |
Selenium and Vitamin E (oral) | Antioxidant | Argos et al., 2017—Selenium and vitamin E supplementation (alpha-tocopherol (100 mg daily) and L-selenomethionine (200 μg daily) did not significantly reduce the incidence of keratinocyte carcinoma development over six years. | No demonstrable clinical efficacy |
Vitamins E and C and Zinc (oral) | Antioxidant | Lloret et al., 2015—Supplementation with vitamin C 500 mg, vitamin E 400 IU, and zinc 50 mg per day did not significantly reduce levels of oxidative stress biomarkers between groups. | No demonstrable clinical efficacy |
Omega-3 Polyunsaturated Fatty Acids (PUFA) (oral) | Reduces photoimmunosuppression | Pilkington et al., 2013—5-g omega-3 PUFA or a control lipid daily for 3 months did not produce a significant difference in measures of photoimmunosuppression in experimentally irradiated patients versus controls. | No demonstrable clinical efficacy |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Djavid, A.R.; Stonesifer, C.; Fullerton, B.T.; Wang, S.W.; Tartaro, M.A.; Kwinta, B.D.; Grimes, J.M.; Geskin, L.J.; Saenger, Y.M. Etiologies of Melanoma Development and Prevention Measures: A Review of the Current Evidence. Cancers 2021, 13, 4914. https://doi.org/10.3390/cancers13194914
Djavid AR, Stonesifer C, Fullerton BT, Wang SW, Tartaro MA, Kwinta BD, Grimes JM, Geskin LJ, Saenger YM. Etiologies of Melanoma Development and Prevention Measures: A Review of the Current Evidence. Cancers. 2021; 13(19):4914. https://doi.org/10.3390/cancers13194914
Chicago/Turabian StyleDjavid, Amir Reza, Connor Stonesifer, Benjamin T. Fullerton, Samuel W. Wang, Marlene A. Tartaro, Bradley D. Kwinta, Joseph M. Grimes, Larisa J. Geskin, and Yvonne M. Saenger. 2021. "Etiologies of Melanoma Development and Prevention Measures: A Review of the Current Evidence" Cancers 13, no. 19: 4914. https://doi.org/10.3390/cancers13194914
APA StyleDjavid, A. R., Stonesifer, C., Fullerton, B. T., Wang, S. W., Tartaro, M. A., Kwinta, B. D., Grimes, J. M., Geskin, L. J., & Saenger, Y. M. (2021). Etiologies of Melanoma Development and Prevention Measures: A Review of the Current Evidence. Cancers, 13(19), 4914. https://doi.org/10.3390/cancers13194914