Human Biomonitoring of Environmental and Occupational Exposures by GC-MS and Gas Sensor Systems: A Systematic Review
Abstract
:1. Introduction
2. Methods
- In English;
- Population and non-methodological studies;
- Fully available;
- Protocol based on the use of GC-MS or a gas sensor.
3. Results
4. Discussion
4.1. POPs: Persistent Organic Pollutants
4.2. VOCs: Volatile Organic Compounds
Gas Sensors for VOC Detection
4.3. Other Pollutants
4.4. Biological Matrices and Biomarker Extraction Methods in HBM
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef] [Green Version]
- World Health Assembly. Health and the Environment: Addressing the Health Impact of Air Pollution; World Health Organization: Geneva, Switzerland, 2015; p. 68. Available online: https://apps.who.int/iris/handle/10665/253237 (accessed on 26 May 2015).
- Available online: https://www.epa.gov/report-environment/human-exposure-and-health (accessed on 4 September 2021).
- WHO Regional Office for Europe. Human Biomonitoring: Facts and Figures; WHO Regional Office for Europe: Copenhagen, Denmark, 2015. [Google Scholar]
- Available online: https://www.hbm4eu.eu/ (accessed on 3 September 2021).
- Ladeira, C.; Viegas, S. Human Biomonitoring—An overview on biomarkers and their application in Occupational and Environmental Health. Biomonitoring 2016, 3, 15–24. [Google Scholar] [CrossRef]
- Drago, G.; Ruggieri, S.; Bianchi, F.; Sampino, S.; Cibella, F. Birth Cohorts in Highly Contaminated Sites: A Tool for Monitoring the Relationships between Environmental Pollutants and Children’s Health. Front. Public Health 2020, 8, 125. [Google Scholar] [CrossRef] [PubMed]
- Tranfo, G.; Marchetti, E.; Pigini, D.; Miccheli, A.; Spagnoli, M.; Sciubba, F.; Conta, G.; Tomassini, A.; Fattorini, L. Targeted and untargeted metabolomics applied to occupational exposure to hyperbaric atmosphere. Toxicol. Lett. 2020, 328, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Yusa, V.; Millet, M.; Coscolla, C.; Roca, M. Analytical methods for human biomonitoring of pesticides. A review. Anal. Chim. Acta 2015, 891, 15–31. [Google Scholar] [CrossRef] [PubMed]
- Longo, V.; Forleo, A.; Capone, S.; Scoditti, E.; Carluccio, M.A.; Siciliano, P.; Massaro, M. In vitro profiling of endothelial volatile organic compounds under resting and pro-inflammatory conditions. Metabolomics 2019, 15, 132. [Google Scholar] [CrossRef]
- Longo, V.; Forleo, A.; Ferramosca, A.; Notari, T.; Pappalardo, S.; Siciliano, P.; Capone, S.; Montano, L. Blood, urine and semen Volatile Organic Compound (VOC) pattern analysis for assessing health environmental impact in highly polluted areas in Italy. Environ. Pollut. 2021, 286, 117410. [Google Scholar] [CrossRef]
- Jayasree, T.; Muttan, S. Study of Gas Sensors for the Detection of Volatile Organic Compounds in Breath. Appl. Mech. Mater. 2014, 573, 785–790. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Luzardo, O.P.; Badea, M.; Zumbado, M.; Rogozea, L.; Floroian, L.; Ilea, A.; Moga, M.; Sechel, G.; Boada, L.D.; Henríquez-Hernández, L.A. Body burden of organohalogenated pollutants and polycyclic aromatic hydrocarbons in Romanian population: Influence of age, gender, body mass index, and habitat. Sci. Total Environ. 2019, 656, 709–716. [Google Scholar] [CrossRef]
- Rudge, C.V.; Sandanger, T.; Röllin, H.B.; Calderon, I.M.; Volpato, G.; Silva, J.L.; Duarte, G.; Neto, C.M.; Sass, N.; Nakamura, M.U.; et al. Levels of selected persistent organic pollutants in blood from delivering women in seven selected areas of São Paulo State, Brazil. Environ. Int. 2012, 40, 162–169. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, H.T.; Blanchet, R.; Gagné, D.; Lauzière, J.; Vézina, C.; Vaissière, É.; Ayotte, P.; Déry, S. Exposure to Toxic Metals and Persistent Organic Pollutants in Inuit Children Attending Childcare Centers in Nunavik, Canada. Environ. Sci. Technol. 2012, 46, 4614–4623. [Google Scholar] [CrossRef]
- Schettgen, T.; Gube, M.; Alt, A.; Fromme, H.; Kraus, T. Pilot study on the exposure of the German general population to non-dioxin-like and dioxin-like PCBs. Int. J. Hyg. Environ. Health 2011, 214, 319–325. [Google Scholar] [CrossRef]
- Jogsten, I.E.; Hagberg, J.; Lindström, G.; van Bavel, B. Analysis of POPs in human samples reveal a contribution of brominated dioxin of up to 15% of the total dioxin TEQ. Chemosphere 2010, 78, 113–120. [Google Scholar] [CrossRef]
- Dufour, P.; Pirard, C.; Charlier, C. Validation of a novel and rapid method for the simultaneous determination of some phenolic organohalogens in human serum by GC-MS. J. Chromatogr. B 2016, 1036–1037, 66–75. [Google Scholar] [CrossRef]
- Humblet, O.; Williams, P.L.; Korrick, S.A.; Sergeyev, O.; Emond, C.; Birnbaum, L.; Burns, J.S.; Altshul, L.; Patterson, J.D.G.; Turner, W.E.; et al. Predictors of Serum Dioxin, Furan, and PCB Concentrations among Women from Chapaevsk, Russia. Environ. Sci. Technol. 2010, 44, 5633–5640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turci, R.; Balducci, C.; Brambilla, G.; Colosio, C.; Imbriani, M.; Mantovani, A.; Vellere, F.; Minoia, C. A simple and fast method for the determination of selected organohalogenated compounds in serum samples from the general population. Toxicol. Lett. 2010, 192, 66–71. [Google Scholar] [CrossRef]
- Koppen, G.; Covaci, A.; Van Cleuvenbergen, R.; Schepens, P.; Winneke, G.; Nelen, V.; Schoeters, G. Comparison of CALUX-TEQ values with PCB and PCDD/F measurements in human serum of the Flanders Environmental and Health Study (FLEHS). Toxicol. Lett. 2001, 123, 59–67. [Google Scholar] [CrossRef]
- Inoue, K.; Harada, K.; Takenaka, K.; Uehara, S.; Kono, M.; Shimizu, T.; Takasuga, T.; Senthilkumar, K.; Yamashita, F.; Koizumi, A. Levels and Concentration Ratios of Polychlorinated Biphenyls and PolybrominatedDiphenyl Ethers in Serum and Breast Milk in Japanese Mothers. Environ. Health Perspect. 2006, 114, 1179–1185. [Google Scholar] [CrossRef] [Green Version]
- Parera, J.; Serra-Prat, M.; Palomera, E.; Mattioli, L.; Abalos, M.; Rivera, J.; Abad, E. Biological monitoring of PCDD/Fs and PCBs in the City of Mataró. A population-based cohort study (1995–2012). Sci. Total Environ. 2013, 461–462, 612–617. [Google Scholar] [CrossRef]
- Moon, C.-S.; Chang, Y.-S.; Kim, B.-H.; Shin, D.; Ikeda, M. Evaluation of serum dioxin congeners among residents near continuously burning municipal solid waste incinerators in Korea. Int. Arch. Occup. Environ. Health 2005, 78, 205–210. [Google Scholar] [CrossRef]
- Charlier, C.J.; Albert, A.; Zhang, L.; Dubois, N.G.; Plomteux, G.J. Polychlorinated biphenyls contamination in women with breast cancer. Clin. Chim. Acta 2004, 347, 177–181. [Google Scholar] [CrossRef]
- Kobayashi, S.; Sata, F.; Miyashita, C.; Miura, R.; Azumi, K.; Kobayashi, S.; Goudarzi, H.; Araki, A.; Ishizuka, M.; Todaka, T.; et al. Gender-specific association of exposure to non-dioxin-like polychlorinated biphenyls during pregnancy with methylation levels of H19 and long interspersed nuclear element-1 in cord blood in the Hokkaido study. Toxicology 2017, 390, 135–145. [Google Scholar] [CrossRef]
- Sochorová, L.; Hanzlíková, L.; Černá, M.; Drgáčová, A.; Fialová, A.; Švarcová, A.; Gramblička, T.; Pulkrabová, J. Perfluorinated alkylated substances and brominated flame retardants in serum of the Czech adult population. Int. J. Hyg. Environ. Health 2017, 220, 235–243. [Google Scholar] [CrossRef]
- Lenters, V.; Thomsen, C.; Smit, L.A.; Jönsson, B.A.; Pedersen, H.S.; Ludwicki, J.K.; Zviezdai, V.; Piersma, A.H.; Toft, G.; Bonde, J.P.; et al. Serum concentrations of polybrominated diphenyl ethers (PBDEs) and a polybrominated biphenyl (PBB) in men from Greenland, Poland and Ukraine. Environ. Int. 2013, 61, 8–16. [Google Scholar] [CrossRef]
- Qu, W.; Bi, X.; Sheng, G.; Lu, S.; Fu, J.; Yuan, J.; Li, L. Exposure to polybrominated diphenyl ethers among workers at an electronic waste dismantling region in Guangdong, China. Environ. Int. 2007, 33, 1029–1034. [Google Scholar] [CrossRef]
- Sjödin, A.; Hagmar, L.; Klasson-Wehler, E.; Kronholm-Diab, K.; Jakobsson, E.; Bergman, A. Flame retardant exposure: Polybrominated diphenyl ethers in blood from Swedish workers. Environ. Health Perspect. 1999, 107, 643–648. [Google Scholar] [CrossRef] [Green Version]
- Jakobsson, K.; Thuresson, K.; Rylander, L.; Sjödin, A.; Hagmar, L.; Bergman, Å. Exposure to polybrominated diphenyl ethers and tetrabromobisphenol A among computer technicians. Chemosphere 2002, 46, 709–716. [Google Scholar] [CrossRef]
- Yu, Z.; Zheng, K.; Ren, G.; Zheng, Y.; Ma, S.; Peng, P.; Wu, M.; Sheng, G.; Fu, J. Identification of Hydroxylated Octa- and Nona-Bromodiphenyl Ethers in Human Serum from Electronic Waste Dismantling Workers. Environ. Sci. Technol. 2010, 44, 3979–3985. [Google Scholar] [CrossRef]
- Xu, B.; Wu, M.; Wang, M.; Pan, C.; Qiu, W.; Tang, L.; Xu, G. Polybrominated diphenyl ethers (PBDEs) and hydroxylated PBDEs in human serum from Shanghai, China: A study on their presence and correlations. Environ. Sci. Pollut. Res. 2018, 25, 3518–3526. [Google Scholar] [CrossRef]
- Lunder, S.; Hovander, L.; Athanassiadis, I.; Bergman, Å. Significantly Higher Polybrominated Diphenyl Ether Levels in Young U.S. Children than in Their Mothers. Environ. Sci. Technol. 2010, 44, 5256–5262. [Google Scholar] [CrossRef]
- Kim, U.-J.; Lee, I.-S.; Kim, H.S.; Oh, J.-E. Monitoring of PBDEs concentration in umbilical cord blood and breast milk from Korean population and estimating the effects of various parameters on accumulation in humans. Chemosphere 2011, 85, 487–493. [Google Scholar] [CrossRef]
- Guo, J.; Miao, W.; Wu, C.; Zhang, J.; Qi, X.; Yu, H.; Chang, X.; Zhang, Y.; Zhou, Z. Umbilical cord serum PBDE concentrations and child adiposity measures at 7 years. Ecotoxicol. Environ. Saf. 2020, 203, 111009. [Google Scholar] [CrossRef]
- Hertz-Picciotto, I.; Bergman, Å.; Fängström, B.; Rose, M.; Krakowiak, P.; Pessah, I.; Hansen, R.; Bennett, D.H. Polybrominated diphenyl ethers in relation to autism and developmental delay: A case-control study. Environ. Health 2011, 10, 1. [Google Scholar] [CrossRef] [Green Version]
- Ho, K.-L.; Yau, M.-S.; Murphy, M.B.; Wan, Y.; Fong, B.M.-W.; Tam, S.; Giesy, J.P.; Leung, K.S.-Y.; Lam, M.H.-W. Urinary bromophenol glucuronide and sulfate conjugates: Potential human exposure molecular markers for polybrominated diphenyl ethers. Chemosphere 2015, 133, 6–12. [Google Scholar] [CrossRef]
- Fromme, H.; Lahrz, T.; Kraft, M.; Fembacher, L.; Mach, C.; Dietrich, S.; Burkardt, R.; Völkel, W.; Göen, T. Organophosphate flame retardants and plasticizers in the air and dust in German daycare centers and human biomonitoring in visiting children (LUPE 3). Environ. Int. 2014, 71, 158–163. [Google Scholar] [CrossRef]
- Fromme, H.; Thomsen, C.; Aschenbrenner, B.; Haug, L.S.; Weber, T.; Kolossa-Gehring, M.; Völkel, W.; Schober, W. Time trend of exposure to dechloranes: Plasma samples of German young adults from the environmental specimen bank collected from 1995 to 2017. Int. J. Hyg. Environ. Health 2020, 229, 113593. [Google Scholar] [CrossRef]
- Hansson, M.; Barregard, L.; Sällsten, G.; Svensson, B.-G.; Rappe, C. Polychlorinated dibenzo- p -dioxin and dibenzofuran levels and patterns in polyvinylchloride and chloralkali industry workers. Int. Arch. Occup. Environ. Health 1997, 70, 51–56. [Google Scholar] [CrossRef]
- Galimova, E.F.; Amirova, Z.K.; Galimov, S.N. Dioxins in the semen of men with infertility. Environ. Sci. Pollut. Res. 2015, 22, 14566–14569. [Google Scholar] [CrossRef]
- Kontsas, H.; Rosenberg, C.; Pfäffli, P.; Jäppinen, P. Gas chromatographic–mass spectrometric determination of chlorophenols in the urine of sawmill workers with past use of chlorophenol-containing anti-stain agents. Analyst 1995, 120, 1745–1749. [Google Scholar] [CrossRef]
- Waidyanatha, S.; Zheng, Y.; Rappaport, S.M. Determination of polycyclic aromatic hydrocarbons in urine of coke oven workers by headspace solid phase microextraction and gas chromatography–mass spectrometry. Chem. Biol. Interact. 2003, 145, 165–174. [Google Scholar] [CrossRef]
- Campo, L.; Mercadante, R.; Rossella, F.; Fustinoni, S. Quantification of 13 priority polycyclic aromatic hydrocarbons in human urine by headspace solid-phase microextraction gas chromatography-isotope dilution mass spectrometry. Anal. Chim. Acta 2009, 631, 196–205. [Google Scholar] [CrossRef]
- Campo, L.; Rossella, F.; Fustinoni, S. Development of a gas chromatography/mass spectrometry method to quantify several urinary monohydroxy metabolites of polycyclic aromatic hydrocarbons in occupationally exposed subjects. J. Chromatogr. B 2008, 875, 531–540. [Google Scholar] [CrossRef]
- Yang, L.; Yan, K.; Zeng, D.; Lai, X.; Chen, X.; Fang, Q.; Guo, H.; Wu, T.; Zhang, X. Association of polycyclic aromatic hydrocarbons metabolites and risk of diabetes in coke oven workers. Environ. Pollut. 2017, 223, 305–310. [Google Scholar] [CrossRef]
- Li, X.; Feng, Y.; Deng, H.; Zhang, W.; Kuang, D.; Deng, Q.; Dai, X.; Lin, D.; Huang, S.; Xin, L.; et al. The Dose–Response Decrease in Heart Rate Variability: Any Association with the Metabolites of Polycyclic Aromatic Hydrocarbons in Coke Oven Workers? PLoS ONE 2012, 7, e44562. [Google Scholar] [CrossRef]
- Yang, L.; Guo, W.; Zeng, D.; Ma, L.; Lai, X.; Fang, Q.; Guo, H.; Zhang, X. Heart rate variability mediates the association between polycyclic aromatic hydrocarbons exposure and atherosclerotic cardiovascular disease risk in coke oven workers. Chemosphere 2019, 228, 166–173. [Google Scholar] [CrossRef]
- De León-Martínez, L.D.; Flores-Ramírez, R.; Rodriguez-Aguilar, M.; Berumen-Rodríguez, A.; Pérez-Vázquez, F.J.; Díaz-Barriga, F. Analysis of urinary metabolites of polycyclic aromatic hydrocarbons in precarious workers of highly exposed occupational scenarios in Mexico. Environ. Sci. Pollut. Res. 2021, 28, 23087–23098. [Google Scholar] [CrossRef]
- Wallace, M.A.G.; Pleil, J.D.; Oliver, K.D.; Whitaker, D.A.; Mentese, S.; Fent, K.W.; Horn, G.P. Non-targeted GC/MS analysis of exhaled breath samples: Exploring human biomarkers of exogenous exposure and endogenous response from professional firefighting activity. J. Toxicol. Environ. Health Part A 2019, 82, 244–260. [Google Scholar] [CrossRef]
- Smith, K.W.; Proctor, S.P.; Ozonoff, A.L.; McClean, M.D. Urinary biomarkers of occupational jet fuel exposure among air force personnel. J. Expo. Sci. Environ. Epidemiol. 2012, 22, 35–45. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Y.-G.; Chen, W.-S.; Cheng, H.-L.; Zeng, X.-Q.; Zhu, Y. Three-dimensional ionic liquid-ferrite functionalized graphene oxide nanocomposite for pipette-tip solid phase extraction of 16 polycyclic aromatic hydrocarbons in human blood sample. J. Chromatogr. A 2018, 1552, 1–9. [Google Scholar] [CrossRef]
- Wirnkor, V.A.; Ngozi, V.E.; Ajero, C.M.; Charity, L.K.; Ngozi, O.S.; Ebere, E.C.; Emeka, A.C. Biomonitoring of concentrations of polycyclic aromatic hydrocarbons in blood and urine of children at playgrounds within Owerri, Imo State, Nigeria. Environ. Anal. Health Toxicol. 2019, 34, e2019011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boada, L.D.; Henríquez-Hernández, L.A.; Navarro, P.; Zumbado, M.; Almeida-González, M.; Camacho, M.; Álvarez-León, E.E.; Valencia-Santana, J.A.; Luzardo, O.P. Exposure to polycyclic aromatic hydrocarbons (PAHs) and bladder cancer: Evaluation from a gene-environment perspective in a hospital-based case-control study in the Canary Islands (Spain). Int. J. Occup. Environ. Health 2015, 21, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Liu, A.; Zhao, Y.; Mu, X.; Huang, T.; Gao, H.; Ma, J. The levels of polycyclic aromatic hydrocarbons (PAHs) in human milk and exposure risk to breastfed infants in petrochemical industrialized Lanzhou Valley, Northwest China. Environ. Sci. Pollut. Res. 2018, 25, 16754–16766. [Google Scholar] [CrossRef]
- Soomro, A.M.; Seehar, G.M.; Bhanger, M.I.; Channa, N. Pesticides in the Blood Samples of Spray-workers at Agriculture Environment: The Toxicological Evaluation. Pak. J. Anal. Environ. Chem. 2008, 9, 32–37. [Google Scholar]
- Kaur, G.; Dogra, N.; Singh, S. Health Risk Assessment of Occupationally Pesticide-Exposed Population of Cancer Prone Area of Punjab. Toxicol. Sci. 2018, 165, 157–169. [Google Scholar] [CrossRef] [PubMed]
- Castorina, R.; Bradman, A.; Fenster, L.; Barr, D.B.; Bravo, R.; Vedar, M.G.; Harnly, M.E.; McKone, T.E.; Eisen, E.A.; Eskenazi, B. Comparison of Current-Use Pesticide and Other Toxicant Urinary Metabolite Levels among Pregnant Women in the CHAMACOS Cohort and NHANES. Environ. Health Perspect. 2010, 118, 856–863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgan, M.K. Predictors of urinary levels of 2,4-dichlorophenoxyacetic acid, 3,5,6-trichloro-2-pyridinol, 3-phenoxybenzoic acid, and pentachlorophenol in 121 adults in Ohio. Int. J. Hyg. Environ. Health 2015, 218, 479–488. [Google Scholar] [CrossRef] [PubMed]
- Ntow, W.J.; Tagoe, L.M.; Drechsel, P.; Kelderman, P.; Gijzen, H.J.; Nyarko, E. Accumulation of persistent organochlorine contaminants in milk and serum of farmers from Ghana. Environ. Res. 2008, 106, 17–26. [Google Scholar] [CrossRef]
- Charlier, C.J.; Plomteux, G.J. Determination of Organochlorine Pesticide Residues in the Blood of Healthy Individuals. Clin. Chem. Lab. Med. 2002, 40, 361–364. [Google Scholar] [CrossRef] [PubMed]
- Charlier, C.J.; Foidart, J.-M. Comparative study of dichlorodiphenyldichloroethylene in blood and semen of two young male populations: Lack of relationship to infertility, but evidence of high exposure of the mothers. Reprod. Toxicol. 2005, 20, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Botella, B.; Crespo, J.; Rivas, A.; Cerrillo, I.; Olea-Serrano, M.F.; Olea, N. Exposure of women to organochlorine pesticides in Southern Spain. Environ. Res. 2004, 96, 34–40. [Google Scholar] [CrossRef]
- Kanazawa, A.; Miyasita, C.; Okada, E.; Kobayashi, S.; Washino, N.; Sasaki, S.; Yoshioka, E.; Mizutani, F.; Chisaki, Y.; Saijo, Y.; et al. Blood persistent organochlorine pesticides in pregnant women in relation to physical and environmental variables in The Hokkaido Study on Environment and Children’s Health. Sci. Total Environ. 2012, 426, 73–82. [Google Scholar] [CrossRef]
- Qu, W.; Suri, R.P.; Bi, X.; Sheng, G.; Fu, J. Exposure of young mothers and newborns to organochlorine pesticides (OCPs) in Guangzhou, China. Sci. Total Environ. 2010, 408, 3133–3138. [Google Scholar] [CrossRef]
- Kuang, L.; Hou, Y.; Huang, F.; Guo, A.; Deng, W.; Sun, H.; Shen, L.; Lin, H.; Hong, H. Pesticides in human milk collected from Jinhua, China: Levels, influencing factors and health risk assessment. Ecotoxicol. Environ. Saf. 2020, 205, 111331. [Google Scholar] [CrossRef]
- Kim, M.; Song, N.R.; Hong, J.; Lee, J.; Pyo, H. Quantitative analysis of organochlorine pesticides in human serum using headspace solid-phase microextraction coupled with gas chromatography–mass spectrometry. Chemosphere 2013, 92, 279–285. [Google Scholar] [CrossRef]
- Harmouche-Karaki, M.; Matta, J.; Helou, K.; Mahfouz, Y.; Fakhoury-Sayegh, N.; Narbonne, J.-F. Serum concentrations of selected organochlorine pesticides in a Lebanese population and their associations to sociodemographic, anthropometric and dietary factors: ENASB study. Environ. Sci. Pollut. Res. 2018, 25, 14350–14360. [Google Scholar] [CrossRef]
- Mercado, L.A.; Freille, S.M.; Vaca-Pereira, J.S.; Cuellar, M.; Flores, L.; Mutch, E.; Olea, N.; Arrebola, J.P. Serum concentrations of p,p′-dichlorodiphenyltrichloroethane (p,p′-DDE) in a sample of agricultural workers from Bolivia. Chemosphere 2013, 91, 1381–1385. [Google Scholar] [CrossRef] [PubMed]
- Selden, A.; Nygren, Y.; Westberg, H.B.; Bodin, L.S. Hexachlorobenzene and octachlorostyrene in plasma of aluminium foundry workers using hexachloroethane for degassing. Occup. Environ. Med. 1997, 54, 613–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, C.; Feng, C.; Qi, X.; Wang, G.; Zheng, M.; Chang, X.; Zhou, Z. Urinary metabolite levels of pyrethroid insecticides in infants living in an agricultural area of the Province of Jiangsu in China. Chemosphere 2013, 90, 2705–2713. [Google Scholar] [CrossRef] [PubMed]
- Tao, L.; Chen, M.; Collins, E.; Lu, C. Simultaneous quantitation of seven pyrethroid metabolites in human urine by capillary gas chromatography-mass spectrometry. J. Sep. Sci. 2013, 36, 773–780. [Google Scholar] [CrossRef]
- Morgan, M.K.; Sheldon, L.S.; Croghan, C.W.; Jones, P.A.; Chuang, J.C.; Wilson, N.K. An observational study of 127 preschool children at their homes and daycare centers in Ohio: Environmental pathways to cis- and trans-permethrin exposure. Environ. Res. 2007, 104, 266–274. [Google Scholar] [CrossRef]
- Zhang, F.; Xu, Y.; Liu, X.; Pan, L.; Ding, E.; Dou, J.; Zhu, B. Concentration Distribution and Analysis of Urinary Glyphosate and Its Metabolites in Occupationally Exposed Workers in Eastern China. Int. J. Environ. Res. Public Health 2020, 17, 2943. [Google Scholar] [CrossRef]
- Conrad, A.; Schröter-Kermani, C.; Hoppe, H.-W.; Rüther, M.; Pieper, S.; Kolossa-Gehring, M. Glyphosate in German adults—Time trend (2001 to 2015) of human exposure to a widely used herbicide. Int. J. Hyg. Environ. Health 2017, 220, 8–16. [Google Scholar] [CrossRef] [Green Version]
- Stajnko, A.; Tratnik, J.S.; Kosjek, T.; Mazej, D.; Jagodic, M.; Eržen, I.; Horvat, M. Seasonal glyphosate and AMPA levels in urine of children and adolescents living in rural regions of Northeastern Slovenia. Environ. Int. 2020, 143, 105985. [Google Scholar] [CrossRef]
- Uddin, M.S.; Blount, B.C.; Lewin, M.D.; Potula, V.; Ragin, A.D.; Dearwent, S.M. Comparison of blood volatile organic compound levels in residents of Calcasieu and Lafayette Parishes, LA, with US reference ranges. J. Expo. Sci. Environ. Epidemiol. 2014, 24, 602–607. [Google Scholar] [CrossRef]
- Fent, K.W.; Evans, D.E.; Booher, D.; Pleil, J.D.; Stiegel, M.A.; Horn, G.P.; Dalton, J. Volatile Organic Compounds Off-gassing from Firefighters’ Personal Protective Equipment Ensembles after Use. J. Occup. Environ. Hyg. 2015, 12, 404–414. [Google Scholar] [CrossRef]
- Wallace, M.A.G.; Pleil, J.D.; Oliver, K.D.; Whitaker, D.A.; Mentese, S.; Fent, K.W.; Horn, G.P. Targeted GC-MS analysis of firefighters’ exhaled breath: Exploring biomarker response at the individual level. J. Occup. Environ. Hyg. 2019, 16, 355–366. [Google Scholar] [CrossRef]
- Jalali, M.; Sakhvid, M.J.Z.; Bahrami, A.; Berijani, N.; Mahjub, H. Oxidative Stress Biomarkers in Exhaled Breath of Workers Exposed to Crystalline Silica Dust by SPME-GC-MS. J Res Health Sci 2016, 16, 153–161. [Google Scholar]
- Erb, A.; Marsan, P.; Burgart, M.; Remy, A.; Lambert-Xolin, A.-M.; Jeandel, F.; Hanser, O.; Robert, A. Simultaneous determination of aromatic and chlorinated compounds in urine of exposed workers by dynamic headspace and gas chromatography coupled to mass spectrometry (dHS-GC-MS). J. Chromatogr. B 2019, 1125, 121724. [Google Scholar] [CrossRef]
- Ceballos, D.M.; Craig, J.; Fu, X.; Jia, C.; Chambers, D.; Chu, M.T.; Fernandez, A.T.; Fruh, V.; Petropoulos, Z.E.; Allen, J.G.; et al. Biological and environmental exposure monitoring of volatile organic compounds among nail technicians in the Greater Boston area. Indoor Air 2019, 29, 539–550. [Google Scholar] [CrossRef]
- Cheng, N.-Y.; Chuang, H.-C.; Shie, R.-H.; Liao, W.-H.; Hwang, Y.-H. Pilot Studies of VOC Exposure Profiles during Surgical Operations. Ann. Work. Expo. Health 2019, 63, 173–183. [Google Scholar] [CrossRef]
- Al-Ghanem, S.; Batth, A.H.; Salhab, A.S. Monitoring of Volatile Anesthetics in Operating Room Personnel Using GC-MS. Jordan Med. J. 2008, 42, 13–19. [Google Scholar]
- Accorsi, A.; Valenti, S.; Barbieri, A.; Raffi, G.B.; Violante, F.S. Proposal for single and mixture biological exposure limits for sevoflurane and nitrous oxide at low occupational exposure levels. Int. Arch. Occup. Environ. Health 2003, 76, 129–136. [Google Scholar] [CrossRef]
- Ghimenti, S.; Tabucchi, S.; Bellagambi, F.; Lomonaco, T.; Onor, M.; Trivella, M.G.; Fuoco, R.; Di Francesco, F. Determination of sevoflurane and isopropyl alcohol in exhaled breath by thermal desorption gas chromatography–mass spectrometry for exposure assessment of hospital staff. J. Pharm. Biomed. Anal. 2015, 106, 218–223. [Google Scholar] [CrossRef]
- Ashley, D.L.; Bonin, M.A.; Cardinali, F.L.; McCraw, J.M.; Wooten, J.V. Blood concentrations of volatile organic compounds in a nonoccupationally exposed US population and in groups with suspected exposure. Clin. Chem. 1994, 40 Pt 2, 1401–1404. [Google Scholar] [CrossRef]
- Jia, C.; Yu, X.; Masiak, W. Blood/air distribution of volatile organic compounds (VOCs) in a nationally representative sample. Sci. Total Environ. 2012, 419, 225–232. [Google Scholar] [CrossRef]
- Lee, J.; Kim, M.-H.; Ha, M.; Chung, B.C. Urinary metabolic profiling of volatile organic compounds in acute exposed volunteers after an oil spill in Republic of Korea. Biomed. Chromatogr. 2010, 24, 562–568. [Google Scholar] [CrossRef]
- O’Lenick, C.R.; Pleil, J.D.; Stiegel, M.A.; Sobus, J.; Wallace, M.A.G. Detection and analysis of endogenous polar volatile organic compounds (PVOCs) in urine for human exposome research. Biomarkers 2019, 24, 240–248. [Google Scholar] [CrossRef]
- Wang, B.-L.; Takigawa, T.; Takeuchi, A.; Yamasaki, Y.; Kataoka, H.; Wang, D.-H.; Ogino, K. Unmetabolized VOCs in urine as biomarkers of low level exposure in indoor environments. J. Occup. Health 2007, 49, 104–110. [Google Scholar] [CrossRef] [Green Version]
- Delfino, R.J.; Gong, H.; Linn, W.S.; Hu, Y.; Pellizzari, E.D. Respiratory symptoms and peak expiratory flow in children with asthma in relation to volatile organic compounds in exhaled breath and ambient air. J. Expo. Anal. Environ. Epidemiol. 2003, 13, 348–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Longo, V.; Forleo, A.; Pinto Provenzano, S.; Montagna, D.D.; Coppola, L.; Zara, V.; Ferramosca, A.; Siciliano, P.; Capone, S. Characterization of Human Semen by GC-MS and VOC Sensor: An Unexplored Approach to the Study on Infertility. In Sensors. CNS 2018; Andò, B., Baldini, F., Di Natale, C., Ferrari, V., Marletta, V., Marrazza, G., Militello, V., Miolo, G., Rossi, M., Scalise, L., et al., Eds.; Lecture Notes in Electrical Engineering; Springer: Cham, Switzerland, 2019; Volume 539. [Google Scholar] [CrossRef]
- Longo, V.; Forleo, A.; Provenzano, S.P.; Coppola, L.; Zara, V.; Ferramosca, A.; Siciliano, P.; Capone, S. HS-SPME-GC-MS metabolomics approach for sperm quality evaluation by semen volatile organic compounds (VOCs) analysis. Biomed. Phys. Eng. Express 2019, 5, 015006. [Google Scholar] [CrossRef]
- Longo, V.; Forleo, A.; Ferramosca, A.; Siciliano, P.; Capone, S.; Pappalardo, S.; Montano, L. Double Approach to Study VOC Composition in Biofluids of Young Men Living in the “Land of Fires” in Campania Region. In Sensors and Microsystems. AISEM 2019; Di Francia, G., Ferrari, V., Ponzoni, A., Sberveglieri, G., Ferrari, M., Eds.; Lecture Notes in Electrical Engineering; Springer: Cham, Switzerland, 2020; Volume 629. [Google Scholar] [CrossRef]
- Barkley, J.; Bunch, J.; Bursey, J.T.; Castillo, N.; Cooper, S.D.; Davis, J.M.; Erickson, M.D.; Harris, B.S.H.; Kirkpatrick, M.; Michael, L.C.; et al. Gas chromatography mass spectrometry computer analysis of volatile halogenated hydrocarbons in man and his environment—A multimedia environmental study. J. Mass Spectrom. 1980, 7, 139–147. [Google Scholar] [CrossRef]
- Guerbet, M.; Brisorgueuil, E.; Jolibois, B.; Caillard, J.-F.; Gehanno, J.-F. Evaluation of Urinary Mutagenicity in Azo Dye Manufacture Workers. Int. J. Occup. Med. Environ. Health 2007, 20, 137–146. [Google Scholar] [CrossRef]
- Rafiee, A.; Delgado-Saborit, J.M.; Sly, P.D.; Amiri, H.; Hoseini, M. Lifestyle and occupational factors affecting exposure to BTEX in municipal solid waste composting facility workers. Sci. Total Environ. 2019, 656, 540–546. [Google Scholar] [CrossRef]
- Rafiee, A.; Delgado-Saborit, J.M.; Gordi, E.; Quémerais, B.; Moghadam, V.K.; Lu, W.; Hashemi, F.; Hoseini, M. Use of urinary biomarkers to characterize occupational exposure to BTEX in healthcare waste autoclave operators. Sci. Total Environ. 2018, 631-632, 857–865. [Google Scholar] [CrossRef]
- Bergamaschi, E.; Brustolin, A.; De Palma, G.; Manini, P.; Mozzoni, P.; Andreoli, R.; Cavazzini, S.; Mutti, A. Biomarkers of dose and susceptibility in cyclists exposed to monoaromatic hydrocarbons. Toxicol. Lett. 1999, 108, 241–247. [Google Scholar] [CrossRef]
- Campo, L.; Cattaneo, A.; Consonni, D.; Scibetta, L.; Costamagna, P.; Cavallo, D.M.; Bertazzi, P.A.; Fustinoni, S. Urinary methyl tert-butyl ether and benzene as biomarkers of exposure to urban traffic. Environ. Int. 2011, 37, 404–411. [Google Scholar] [CrossRef]
- Hajimiragha, H.; Ewers, U.; Brockhaus, A.; Boettger, A. Levels of benzene and other volatile aromatic compounds in the blood of non-smokers and smokers. Int. Arch. Occup. Environ. Health 1989, 61, 513–518. [Google Scholar] [CrossRef]
- Lee, J.-E.; Lim, H.-H.; Shin, H.-S. Simultaneous determination of 15 BTEX hydroxyl biomarkers in urine by headspace solid-phase microextraction gas chromatography–mass spectrometry. J. Pharm. Biomed. Anal. 2019, 174, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Menezes, H.C.; Amorim, L.C.A.; Cardeal, Z.L. Sampling of benzene in environmental and exhaled air by solid-phase microextraction and analysis by gas chromatography–mass spectrometry. Anal. Bioanal. Chem. 2009, 395, 2583–2589. [Google Scholar] [CrossRef] [PubMed]
- Wester, R.C.; Maibach, H.I.; Gruenke, L.D.; Craig, J.C. Benzene levels in ambient air and breath of smokers and nonsmokers in urban and pristine environments. J. Toxicol. Environ. Health Part A 1986, 18, 567–573. [Google Scholar] [CrossRef]
- Qu, Q.; Melikian, A.A.; Li, G.; Shore, R.; Chen, L.; Cohen, B.; Yin, S.; Kagan, M.R.; Li, H.; Meng, M.; et al. Validation of biomarkers in humans exposed to benzene: Urine metabolites. Am. J. Ind. Med. 2000, 37, 522–531. [Google Scholar] [CrossRef]
- Dias, C.M.; Menezes, H.; Cardeal, Z.L. Environmental and biological determination of acrolein using new cold fiber solid phase microextraction with gas chromatography mass spectrometry. Anal. Bioanal. Chem. 2017, 409, 2821–2828. [Google Scholar] [CrossRef]
- Chambers, D.M.; Blount, B.C.; McElprang, D.O.; Waterhouse, M.G.; Morrow, J.C. Picogram Measurement of Volatile n-Alkanes (n-Hexane through n-Dodecane) in Blood Using Solid-Phase Microextraction To Assess Nonoccupational Petroleum-Based Fuel Exposure. Anal. Chem. 2008, 80, 4666–4674. [Google Scholar] [CrossRef] [PubMed]
- Sugiura, S.; Nakanishi, H.; Asano, M.; Hashida, T.; Tanimura, M.; Hama, T.; Nabeshima, T. Multicenter study for environmental and biological monitoring of occupational exposure to cyclophosphamide in Japan. J. Oncol. Pharm. Pract. 2011, 17, 20–28. [Google Scholar] [CrossRef]
- Salthammer, T. Very volatile organic compounds: An understudied class of indoor air pollutants. Indoor Air 2014, 26, 25–38. [Google Scholar] [CrossRef]
- Jaeschke, C.; Glöckler, J.; Padilla, M.; Mitrovics, J.; Mizaikoff, B. An eNose-based method performing drift correction for online VOC detection under dry and humid conditions. Anal. Methods 2020, 12, 4724–4733. [Google Scholar] [CrossRef]
- Pace, C.; Fragomeni, L.; Khalaf, W. Developments and Applications of Electronic Nose Systems for Gas Mixtures Classification and Concentration Estimation. In Applications in Electronics Pervading Industry, Environment and Society; De Gloria, A., Ed.; Lecture Notes in Electrical Engineering; Springer: Cham, Switzerland, 2016; Volume 351. [Google Scholar] [CrossRef]
- Eambaipreuk, A.; Kladsomboon, S.; Kerdcharoen, T. Breath monitoring based on the optical electronic nose system. In Proceedings of the 4th 2011 Biomedical Engineering International Conference, Shanghai, China, 15–17 October 2011; pp. 63–66. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, D.; Zhang, Q.; Chen, X.; Xu, G.; Lu, Y.; Liu, Q. Smartphone-based sensing system using ZnO and graphene modified electrodes for VOCs detection. Biosens. Bioelectron. 2017, 93, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Shao, S.; Chen, Y.; Huang, S.; Jiang, F.; Wang, Y.; Koehn, R. A tunable volatile organic compound sensor by using PtOx/GQDs/TiO2 nanocomposite thin films at room temperature under visible-light activation. RSC Adv. 2017, 7, 39859–39868. [Google Scholar] [CrossRef] [Green Version]
- Hoppe, M.; Ababii, N.; Postica, V.; Lupan, O.; Polonskyi, O.; Schütt, F.; Kaps, S.; Sukhodub, L.; Sontea, V.; Strunskus, T.; et al. (CuO-Cu2O)/ZnO:Al heterojunctions for volatile organic compound detection. Sens. Actuators B Chem. 2018, 255, 1362–1375. [Google Scholar] [CrossRef]
- Kus, F.; Altinkok, C.; Zayim, E.; Erdemir, S.; Tasaltin, C.; Gurol, I. Surface acoustic wave (SAW) sensor for volatile organic compounds (VOCs) detection with calix[4]arene functionalized Gold nanorods (AuNRs) and silver nanocubes (AgNCs). Sens. Actuators B Chem. 2021, 330, 129402. [Google Scholar] [CrossRef]
- Seo, M.-H.; Yuasa, M.; Kida, T.; Kanmura, Y.; Huh, J.-S.; Yamazoe, N.; Shimanoe, K. Gas sensor using noble metal-loaded TiO2 nanotubes for detection of large-sized volatile organic compounds. J. Ceram. Soc. Jpn. 2011, 119, 884–889. [Google Scholar] [CrossRef] [Green Version]
- Suematsu, K.; Harano, W.; Oyama, T.; Shin, Y.; Watanabe, K.; Shimanoe, K. Pulse-Driven Semiconductor Gas Sensors toward ppt Level Toluene Detection. Anal. Chem. 2018, 90, 11219–11223. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, Y.; Wang, Z.; Yang, L.; Wu, X.; Han, N.; Chen, Y. Synergetic p+n Field-Effect Transistor Circuits for ppb-Level Xylene Detection. IEEE Sens. J. 2018, 18, 3875–3882. [Google Scholar] [CrossRef]
- Sampson, A.; Panchal, S.; Phadke, A.; Kashyap, A.; Suman, J.; Unnikrishnan, G.; Datar, S. Quartz tuning fork based sensor for detection of volatile organic compounds: Towards breath analysis. Mater. Res. Express 2018, 5, 045407. [Google Scholar] [CrossRef]
- Berkhout, D.J.C.; Benninga, M.A.; Van Stein, R.M.; Brinkman, P.; Niemarkt, H.J.; De Boer, N.K.H.; De Meij, T.G.J. Effects of Sampling Conditions and Environmental Factors on Fecal Volatile Organic Compound Analysis by an Electronic Nose Device. Sensors 2016, 16, 1967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenberg, C.; Nikkilä, K.; Henriks-Eckerman, M.-L.; Peltonen, K.; Engströrm, K. Biological monitoring of aromatic diisocyanates in workers exposed to thermal degradation products of polyurethanes. J. Environ. Monit. 2002, 4, 711–716. [Google Scholar] [CrossRef]
- González, N.; Cunha, S.; Monteiro, C.; Fernandes, J.; Marquès, M.; Domingo, J.L.; Nadal, M. Quantification of eight bisphenol analogues in blood and urine samples of workers in a hazardous waste incinerator. Environ. Res. 2019, 176, 108576. [Google Scholar] [CrossRef] [PubMed]
- Vanage, G.R.; Pednekar, P.P.; Gajbhiye, R.K.; Patil, A.D.; Surve, S.V.; Datar, A.G.; Balsarkar, G.D.; Chuahan, A.R. Estimation of plasma levels of bisphenol-A & phthalates in fertile & infertile women by gas chromatography-mass spectrometry. Indian J. Med. Res. 2018, 148, 734–742. [Google Scholar] [CrossRef]
- Welinder, H.; Skarping, G. Hexahydrophthalic acid in urine as an index of exposure to hexahydrophthalic anhydride. Int. Arch. Occup. Environ. Health 1991, 63, 77–79. [Google Scholar] [CrossRef]
- Bader, M.; Rosenberger, W.; Rebe, T.; Keener, S.A.; Brock, T.H.; Hemmerling, H.-J.; Wrbitzky, R. Ambient monitoring and biomonitoring of workers exposed to N-methyl-2-pyrrolidone in an industrial facility. Int. Arch. Occup. Environ. Health 2005, 79, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Feizabadi, G.K.; Hajizadeh, Y.; Feizi, A.; Ebrahimpour, K. Urinary Concentrations of Parabens in a Population of Iranian Adolescent and Their Association with Sociodemographic Indicators. Arch. Environ. Contam. Toxicol. 2020, 79, 195–207. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Longo, V.; Forleo, A.; Giampetruzzi, L.; Siciliano, P.; Capone, S. Human Biomonitoring of Environmental and Occupational Exposures by GC-MS and Gas Sensor Systems: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 10236. https://doi.org/10.3390/ijerph181910236
Longo V, Forleo A, Giampetruzzi L, Siciliano P, Capone S. Human Biomonitoring of Environmental and Occupational Exposures by GC-MS and Gas Sensor Systems: A Systematic Review. International Journal of Environmental Research and Public Health. 2021; 18(19):10236. https://doi.org/10.3390/ijerph181910236
Chicago/Turabian StyleLongo, Valentina, Angiola Forleo, Lucia Giampetruzzi, Pietro Siciliano, and Simonetta Capone. 2021. "Human Biomonitoring of Environmental and Occupational Exposures by GC-MS and Gas Sensor Systems: A Systematic Review" International Journal of Environmental Research and Public Health 18, no. 19: 10236. https://doi.org/10.3390/ijerph181910236
APA StyleLongo, V., Forleo, A., Giampetruzzi, L., Siciliano, P., & Capone, S. (2021). Human Biomonitoring of Environmental and Occupational Exposures by GC-MS and Gas Sensor Systems: A Systematic Review. International Journal of Environmental Research and Public Health, 18(19), 10236. https://doi.org/10.3390/ijerph181910236