Phytochemicals from Rhizophora mucronata Propagules, Its In Vitro Anti-Cancer and In Silico Drug-Likeness Potential
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Isolation, Purification, and Identification of Compound
3.2. Separation and Identification of Chromatographic Peaks in Extract
3.3. In Vitro Anti-Cancer Studies
3.4. In Silico Analysis on Drug-Likeness and Toxicity of Selected Compounds
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duke, N.C. Rhizophora apiculata, R. mucronata, R. stylosa, R. x annamalai, R. x lamarckii (Indo-West Pacific stilt mangrove). In Traditional Trees of Pacific Islands: Their Culture, Environment, and Use; Elevith, C.R., Ed.; Permanent Agriculture Resources (PAR): Holualoa, HI, USA, 2006; pp. 641–660. [Google Scholar]
- Quisumbing, E.A. Medicinal Plants of the Philippines; Katha Publishing Company: Quezon City, Philippines, 1978. [Google Scholar]
- Rohini, R.M.; Das, A.K. A comparative evaluation of analgesic and anti-inflammatory activities of Rhizophora mucronata bark extracts. Pharmacologyonline 2009, 1, 780–791. [Google Scholar]
- Govindasamy, C.; Kannan, R. Pharmacognosy of mangrove plants in the system of unani medicine. Asian Pac. J. Trop. Dis. 2012, 2, S38–S41. [Google Scholar] [CrossRef]
- Misra, S.; Choudhury, A.; Dutta, A.K.; Ghosh, A. Sterols and fatty acids from three species of mangrove. Phytochemistry 1984, 23, 2823–2827. [Google Scholar] [CrossRef]
- Lakshmi, V.; Misra, A. The novel 1-hydroxy-5-oxobicyclo [6.4.0] dodecane from Rhizophora mucronata. Planta Med. 1995, 61, 382–383. [Google Scholar] [CrossRef]
- Gurudeeban, S.; Ramanathan, T.; Satyavani, K. Antimicrobial and radical scavenging effects of alkaloid extracts from Rhizophora mucronata. Pharm. Chem. J. 2015, 49, 34–37. [Google Scholar] [CrossRef]
- Gurudeeban, S.; Kaliamurthi, S.; Sheik, H.S.; Thiruganasambandam, R. Molecular docking, isolation and biological evaluation of Rhizophora mucronata flavonoids as anti-nociceptive agents. Biomed. Prev. Nutr. 2014, 4, 555–560. [Google Scholar] [CrossRef]
- Hridya, V.K.; Godson, P.S.; Chandrasekar, N. Chromatographic identification of two biologically important triterpenoids from the chloroform extract of Rhizophora mucronata. Acta Chromatogr. 2012, 24, 123–129. [Google Scholar] [CrossRef]
- Hemberger, Y.; Xu, J.; Wray, V.; Proksch, P.; Wu, J.; Bringmann, G. Pestalotiopens A and B: Stereochemically challenging flexible sesquiterpene-cyclopaldic acid hybrids from Pestalotiopsis sp. Chem. A Eur. J. 2013, 19, 15556–15564. [Google Scholar] [CrossRef]
- Taniguchi, K.; Funasaki, M.; Kishida, A.; Sadhu, S.K.; Ahmed, F.; Ishibashi, M.; Ohsaki, A. Two new coumarins and a new xanthone from the leaves of Rhizophora mucronata. Bioorganic Med. Chem. Lett. 2018, 28, 1063–1066. [Google Scholar] [CrossRef] [PubMed]
- Imdadul, H.; Wirakarnain, S.; Koshy, P.; Arash, R.; Shariff, H.A.B.M.; Mat, T.R. Valuable antioxidant and antimicrobial extracts from Rhizophora mucronata of Asiatic Mangrove forests. Res. J. Biotechnol. 2011, 6, 10–14. [Google Scholar]
- Joel, E.L.; Bhimba, V. Isolation and characterization of secondary metabolites from the mangrove plant Rhizophora mucronata. Asian Pac. J. Trop. Med. 2010, 3, 602–604. [Google Scholar] [CrossRef] [Green Version]
- Suganthy, N.; Kesika, P.; Pandian, S.K.; Devi, K.P. Mangrove plant extracts: Radical scavenging activity and the battle against food-borne pathogens. Complement. Med. Res. 2009, 16, 41–48. [Google Scholar] [CrossRef]
- Rahman, A.M.; Hasan, S.N.; Sampad, K.S.; Das, A.K. Atinociceptive, antidiarrhoeal and cytotoxic activities of Rhizophora mucronata lamk. Pharmacologyonline 2011, 1, 921–929. [Google Scholar]
- Rege, A.A.; Ambaye, R.Y.; Deshmukh, R.A. In-vitro testing of anti-HIV activity of some medicinal plants. Indian J. Nat. Prod. Resour. 2010, 1, 193–199. [Google Scholar]
- Sachithanandam, V.; Lalitha, P.; Parthiban, A.; Muthukumaran, J.; Jain, M.; Misra, R.; Mageswaran, T.; Sridhar, R.; Purvaja, R.; Ramesh, R. A comprehensive in silico and in vitro studies on quinizarin: A promising phytochemical derived from Rhizophora mucronata Lam. J. Biomol. Struct. Dyn. 2021, 1–12. [Google Scholar] [CrossRef]
- Ravikumar, S.; Jacob Inbaneson, S.; Suganthi, P.; Gnanadesigan, M. In vitro antiplasmodial activity of ethanolic extracts of mangrove plants from South East coast of India against chloroquine-sensitive Plasmodium falciparum. Parasitol. Res. 2011, 108, 873–878. [Google Scholar] [CrossRef]
- Rohini, R.M.; Das, A.K. Triterpenoids from the stem bark of Rhizophora mucronata. Nat. Prod. Res. 2010, 24, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Madhu, A.; Suresh Chandra Venkata Appa Rao, A.; Sushma, S.; Gowri, P.M.; Raju, T.V. Isomeric ent-labdane-type diterpenoids from the stems of Rhizophora mucronata. Helv. Chim. Acta 2014, 97, 1531–1538. [Google Scholar] [CrossRef]
- Lawag, I.L.; Aguinaldo, A.M.; Naheed, S.; Mosihuzzaman, M. α-Glucosidase inhibitory activity of selected Philippine plants. J. Ethnopharmacol. 2012, 144, 217–219. [Google Scholar] [CrossRef] [PubMed]
- Islam Howlader, M.S.; Jamil Ahmed, M.; Hamidul Kabir, A.N.M.; Gias Uddin, M.; Khalid Hossain, M. Antibacterial, cytotoxic, analgesic and diuretic activities of Rhizophora mucronata Lam. bark. Indian J. Nat. Prod. Resour. 2013, 4, 229–232. [Google Scholar]
- Manigandan, V.; Gurudeeban, S.; Satyavani, K.; Ramanathan, T. Molecular docking studies of Rhizhopora mucronata alkaloids against neuroinflammatory marker cyclooxygenase 2. Int. J. Biol. Chem. 2014, 8, 91–99. [Google Scholar]
- Premanathan, M.; Kathiresan, K.; Yamamoto, N.; Nakashima, H. In vitro anti-human immunodeficiency virus activity of polysaccharide from Rhizophora mucronata poir. Biosci. Biotechnol. Biochem. 1999, 63, 1187–1191. [Google Scholar] [CrossRef]
- Anjaneyulu, A.S.R.; Anjaneyulu, V.; Rao, V.L. Rhizophorin B: A novel beyerane diterpenoid from the Indian mangrove plant Rhizophora mucronata. J. Chem. 2000, 39B, 803–807. [Google Scholar]
- Laphookhieo, S.; Karalai, C.; Ponglimanont, C. New sesquiterpenoid and triterpenoids from the fruits of Rhizophora mucronata. Chem. Pharm. Bull. 2004, 52, 883–885. [Google Scholar] [CrossRef] [Green Version]
- Ravikumar, S.; Gnanadesigan, M. Hepatoprotective and antioxidant properties of Rhizophora mucronata mangrove plant in CCl 4 intoxicated rats. J. Exp. Clin. Med. 2012, 4, 66–72. [Google Scholar] [CrossRef]
- Syed Ali, M.; Ravikumar, S.; Margaret Beula, J.; Anuradha, V.; Yogananth, N. Insecticidal compounds from Rhizophoraceae mangrove plants for the management of dengue vector Aedes aegypti. J. Vector Borne Dis. 2014, 51, 106–114. [Google Scholar]
- Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; Mcmahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd, M.R. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst. 1990, 82, 1107–1112. [Google Scholar] [CrossRef]
- Nurhanan, M.Y.; Nor Azah, M.A.; Zunoliza, A.; Siti Humeriah, A.G.; Siti Syarifah, M.M.; Nor Hayati, A. In vitro anticancer activity and high-performance liquid chromatography profiles of Aquilaria subintegra fruit and seed extracts. J. Trop. For. Sci. 2017, 29, 208–214. [Google Scholar]
- Schyman, P.; Liu, R.; Desai, V.; Wallqvist, A. VNN web server for ADMET predictions. Front. Pharmacol. 2017, 8, 889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sushko, I.; Novotarskyi, S.; Körner, R.; Pandey, A.K.; Rupp, M.; Teetz, W.; Brandmaier, S.; Abdelaziz, A.; Prokopenko, V.V.; Tanchuk, V.Y.; et al. Online chemical modeling environment (OCHEM): Web platform for data storage, model development and publishing of chemical information. J. Comput. Aided. Mol. Des. 2011, 25, 533–554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wall, M.E.; Taylor, H.; Wani, M.C. Plant antitumor agents, 24. Rapid 9-KB assay. J. Nat. Prod. 1987, 50, 764–766. [Google Scholar] [CrossRef]
- Boyd, M.R. The NCI in vitro anticancer drug discovery screen, concept, implementation, and operation 1985–1995. In Anticancer Drug Development Guide: Preclinical Screening, Clinical Trials, and Approval; Teicher, B., Ed.; Humana Press: Totowa, NJ, USA, 1997; pp. 23–42. [Google Scholar]
- Wong, S.K.; Lim, Y.Y.; Ling, S.K.; Chan, E.W.C. Caffeoylquinic acids in leaves of selected Apocynaceae species: Their isolation and content. Pharmacogn. Res. 2014, 6, 67. [Google Scholar] [CrossRef] [Green Version]
- Pauli, G.F.; Poetsch, F.; Nahrstedt, A. Structure assignment of natural quinic acid derivatives using proton nuclear magnetic resonance techniques. Phytochem. Anal. 1998, 9, 177–185. [Google Scholar] [CrossRef]
- Pauli, G.F.; Kuczkowiak, U.; Nahrstedt, A. Solvent effects in the structure dereplication of caffeoyl quinic acids. Magn. Reson. Chem. 1999, 37, 827–836. [Google Scholar] [CrossRef]
- Lu, Y.; Foo, L.Y. The polyphenol constituents of grape pomace. Food Chem. 1999, 65, 1–8. [Google Scholar] [CrossRef]
- Jiang, X.; Liu, Y.; Wu, Y.; Tan, H.; Meng, F.; Wang, Y.S.; Li, M.; Zhao, L.; Liu, L.; Qian, Y.; et al. Analysis of accumulation patterns and preliminary study on the condensation mechanism of proanthocyanidins in the tea plant [Camellia sinensis]. Sci. Rep. 2015, 5, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Resende, F.O.; Rodrigues-Filho, E.; Luftmann, H.; Petereit, F.; De Mello, J.C.P. Phenylpropanoid substituted flavan-3-ols from trichilia catigua and their in vitro antioxidative activity. J. Braz. Chem. Soc. 2011, 22, 2087–2093. [Google Scholar] [CrossRef] [Green Version]
- Orisakeye, O.T.; Olugbade, T.A. Epicatechin and procyanidin B2 in the stem and root bark of Sterculia tragacantha Lindl (Sterculiaceae). Med. Chem. 2014, 4, 334–337. [Google Scholar] [CrossRef] [Green Version]
- Bajko, E.; Kalinowska, M.; Borowski, P.; Siergiejczyk, L.; Lewandowski, W. 5-O-caffeoylquinic acid: A spectroscopic study and biological screening for antimicrobial activity. LWT-Food Sci. Technol. 2016, 65, 471–479. [Google Scholar] [CrossRef]
- Tai, J.; Cheung, S.; Chan, E.; Hasman, D. Antiproliferation effect of commercially brewed coffees on human ovarian cancer cells in vitro. Nutr. Cancer 2010, 62, 1044–1057. [Google Scholar] [CrossRef]
- Ravindranath, M.H.; Saravanan, T.S.; Monteclaro, C.C.; Presser, N.; Ye, X.; Selvan, S.R.; Brosman, S. Epicatechins purified from green tea (Camellia sinensis) differentially suppress growth of gender-dependent human cancer cell lines. Evid.-Based Complement. Altern. Med. 2006, 3, 237–247. [Google Scholar] [CrossRef] [Green Version]
- Shay, J.; Elbaz, H.A.; Lee, I.; Zielske, S.P.; Malek, M.H.; Hüttemann, M. Molecular mechanisms and therapeutic effects of (-)-epicatechin and other polyphenols in cancer, inflammation, diabetes, and neurodegeneration. Oxid. Med. Cell. Longev. 2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siddique, H.R.; Liao, D.J.; Mishra, S.K.; Schuster, T.; Wang, L.; Matter, B.; Campbell, P.M.; Villalta, P.; Nanda, S.; Deng, Y.; et al. Epicatechin-rich cocoa polyphenol inhibits Kras-activated pancreatic ductal carcinoma cell growth in vitro and in a mouse model. Int. J. Cancer 2012, 131, 1720–1731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 1997, 23, 3–25. [Google Scholar] [CrossRef]
- Wilkinson, G.R. Drug metabolism and variability among patients in drug response. N. Engl. J. Med. 2005, 352, 2211–2221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slaughter, R.L.; Edwards, D.J. Recent advances: The cytochrome P450 enzymes. Ann. Pharmacother. 1995, 29, 619–624. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Liu, J.; Liang, J.; Liu, X.; Li, W.; Liu, Z.; Ding, Z.; Tuo, D. Towards improvements for penetrating the blood-brain barrier-recent progress from a material and pharmaceutical perspective. Cells 2018, 7, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hennessy, M.; Spiers, J.P. A primer on the mechanics of P-glycoprotein the multidrug transporter. Pharmacol. Res. 2007, 55, 1–15. [Google Scholar] [CrossRef]
Cancer Cell Lines | A2780 (Ovarian Cancer) | SKOV-3 (Ovarian Cancer) | HT-29 (Colorectal Cancer) | T47D (Breast Cancer) |
---|---|---|---|---|
Extracts: | ||||
BK(A) Young cotyledon | 14.85 ± 1.79 | 28.86 ± 2.25 | >100 | 16.59 ± 2.25 |
BK(B) Young Hypocotyls | 12.67 ± 0.40 | 27.36 ± 0.96 | 15.85 ± 0.14 | 15.95 ± 2.52 |
BK(C) Mature Hypocotyls | 22.37 ± 6.00 | 35.50 ± 0.51 | >100 | 15.63 ± 3.13 |
Fractions from BK(B): | ||||
BK(B)1 | 21.91 ± 1.57 | 25.07 ± 0.79 | 15.67 ± 0.07 | >100 |
BK(B)2 | 17.52 ± 0.87 | 20.98 ± 0.49 | 15.17 ± 1.32 | >100 |
BK(B)3 | 18.55 ± 0.90 | 21.39 ± 0.51 | 15.39 ± 0.33 | >100 |
Compounds: | ||||
4-O-caffeoyl quinic acid | 21.01 ± 0.41 | 16.77 ± 0.58 | 18.50 ± 0.89 | 20.20 ± 1.36 |
5-O-caffeoyl quinic acid | 19.54 ± 1.05 | 21.68 ± 0.78 | 28.01 ± 1.08 | 24.70 ± 0.88 |
Procyanidin B2 | 23.11 ± 0.52 | 23.13 ± 0.34 | 21.14 ± 0.43 | 24.44 ± 1.40 |
Epicatechin | 18.22 ± 0.81 | 22.68 ± 0.89 | 28.28 ± 2.06 | 27.11 ± 1.00 |
Cisplatin | 0.71 ± 0.10 | 0.82 ± 0.04 | 0.81 ± 0.04 | 0.86 ± 0.01 |
Lipinski’s Parameters | Compound | |||
---|---|---|---|---|
Epi-Catechin | 5-O-Caffeonyl Quinic Acid | 4-O-Caffeoyl Quinic Acid | Procyanidin B2 | |
miLogP | 1.369 | −0.453 | −0.671 | 2.58 |
Topological polar surface area (Å2) (TPSA) | 110.4 | 164.7 | 164.7 | 220.75 |
No. of atoms | 21 | 25 | 25 | 42 |
Mwt | 290.27 | 354.3 | 354.3 | 578.53 |
No. of hydrogen acceptor (nOH) | 6 | 9 | 9 | 12 |
No. of hydrogen donor (nOHNH) | 5 | 6 | 6 | 10 |
Lipinski’s violation | 0 | 1 | 1 | 3 |
No. of rotatable bonds | 1 | 5 | 5 | 3 |
Volume (Å3) | 244.1 | 296.3 | 296.3 | 475.67 |
Parameters | Compound | |||
---|---|---|---|---|
Epi-Catechin | 5-O-Caffeoyl Quinic Acid | 4-O-Caffeoyl Quinic Acid | Procyanidin B2 | |
GPCR ligand | 0.41 | 0.29 | 0.19 | 0.20 |
Ion channel modulator | 0.14 | 0.14 | 0.02 | −0.33 |
Kinase inhibitor | 0.09 | −0.00 | −0.10 | −0.12 |
Nuclear receptor ligand | 0.60 | 0.74 | 0.66 | 0.16 |
Protease inhibitor | 0.26 | 0.27 | 0.14 | 0.17 |
Enzyme inhibitor | 0.47 | 0.62 | 0.49 | 0.09 |
Toxicity Parameters | Compound | |||
---|---|---|---|---|
Epi-Catechin | 5-O-Caffeoyl Quinic Acid | 4-O-Caffeoyl Quinic Acid | Procyanidin B2 | |
Mutagenic | None | None | None | None |
Tumorigenic | None | None | None | None |
Reproductive | None | None | None | High |
Irritant | None | None | None | None |
Drug score | 0.871 | 0.437 | 0.697 | 0.33 |
Epi-Catechin | 5-O-Caffeoyl Quinic Acid | 4-O-Caffeoyl Quinic Acid | Procyanidin B2 | |||||
---|---|---|---|---|---|---|---|---|
OCHEM | vNN | OCHEM | vNN | OCHEM | vNN | OCHEM | vNN | |
CYP450 Inhibitor (CYP3A4) | No | No | No | No | No | No | No | No |
CYP450 Inhibitor (CYP2D6) | No | No | No | No | No | No | No | No |
CYP450 Inhibitor (CYP2C19) | No | No | No | No | No | No | No | No |
CYP450 Inhibitor (CYP2C9) | No | No | No | No | No | No | No | No |
CYP450 Inhibitor (CYP1A2) | No | No | No | No | No | No | Yes | No |
AMES | Inactive | No | Inactive | No | Inactive | No | Active | No |
DILI | - | Yes | - | Yes | - | Yes | - | No |
Cytotoxicity | - | No | - | No | - | No | - | No |
HLM | - | Yes | - | Yes | - | Yes | - | Yes |
BBB | - | No | - | No | - | No | - | No |
P-gp Inhibitor | - | No | - | No | - | No | - | No |
P-gp Substrate | - | Yes | - | No | - | No | - | Yes |
hERG blocker | - | Yes | - | No | - | No | - | Yes |
MMP | - | No | - | No | - | No | - | No |
MRTD (mg/day) | - | 1762 | - | 2605 | - | 3096 | - | 4066 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yunos, N.M.; Ling, S.K.; Osman, A.; Abdullah, Z.; Sallehudin, N.J. Phytochemicals from Rhizophora mucronata Propagules, Its In Vitro Anti-Cancer and In Silico Drug-Likeness Potential. Chemistry 2021, 3, 979-990. https://doi.org/10.3390/chemistry3030070
Yunos NM, Ling SK, Osman A, Abdullah Z, Sallehudin NJ. Phytochemicals from Rhizophora mucronata Propagules, Its In Vitro Anti-Cancer and In Silico Drug-Likeness Potential. Chemistry. 2021; 3(3):979-990. https://doi.org/10.3390/chemistry3030070
Chicago/Turabian StyleYunos, Nurhanan Murni, Sui Kiong Ling, Asiah Osman, Zunoliza Abdullah, and Nor Jannah Sallehudin. 2021. "Phytochemicals from Rhizophora mucronata Propagules, Its In Vitro Anti-Cancer and In Silico Drug-Likeness Potential" Chemistry 3, no. 3: 979-990. https://doi.org/10.3390/chemistry3030070
APA StyleYunos, N. M., Ling, S. K., Osman, A., Abdullah, Z., & Sallehudin, N. J. (2021). Phytochemicals from Rhizophora mucronata Propagules, Its In Vitro Anti-Cancer and In Silico Drug-Likeness Potential. Chemistry, 3(3), 979-990. https://doi.org/10.3390/chemistry3030070