Next Article in Journal
Energy, Entropy and Exergy Concepts and Their Roles in Thermal Engineering
Previous Article in Journal
Entropy Bounds, Holographic Principle and Uncertainty Relation
Article Menu

Export Article

Open AccessArticle
Entropy 2001, 3(3), 76-115;

Mechanical Entropy and Its Implications

Energetic Materials Research and Testing Center (EMRTC), Socorro, NM 87801, USA
Received: 24 February 2001 / Accepted: 19 June 2001 / Published: 22 June 2001
Full-Text   |   PDF [488 KB, uploaded 24 February 2015]   |  


It is shown that the classical laws of thermodynamics require that mechanical systems must exhibit energy that becomes unavailable to do useful work. In thermodynamics, this type of energy is called entropy. It is further shown that these laws require two metrical manifolds, equations of motion, field equations, and Weyl's quantum principles. Weyl's quantum principle requires quantization of the electrostatic potential of a particle and that this potential be non-singular. The interactions of particles through these non-singular electrostatic potentials are analyzed in the low velocity limit and in the relativistic limit. It is shown that writing the two particle interactions for unlike particles allows an examination in two limiting cases: large and small separations. These limits are shown to have the limiting motions of: all motions are ABOUT the center of mass or all motion is OF the center of mass. The first limit leads to the standard Dirac equation. The second limit is shown to have equations of which the electroweak theory is a subset. An extension of the gauge principle into a five-dimensional manifold, then restricting the generality of the five-dimensional manifold by using the conservation principle, shows that the four-dimensional hypersurface that is embedded within the 5-D manifold is required to obey Einstein's field equations. The 5-D gravitational quantum equations of the solar system are presented. View Full-Text
Keywords: mechanical entropy; entropy manifold; geometry quantum echanics; quantum gravity; SU(2); SU(3) mechanical entropy; entropy manifold; geometry quantum echanics; quantum gravity; SU(2); SU(3)

Figure 1

This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Share & Cite This Article

MDPI and ACS Style

Williams, P.E. Mechanical Entropy and Its Implications. Entropy 2001, 3, 76-115.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Entropy EISSN 1099-4300 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top