Entropy Method for Decision Making with Uncertainty
1. Introduction
2. Key Research Gaps
3. Future Research Directions
Funding
Acknowledgments
Conflicts of Interest
References
- Singh, J.; Ray, S.S. Integrating fuzzy rough set-based entropies for identifying drug-resistant miRNAs in cancer. J. Comput. Sci. 2025, 91, 102673. [Google Scholar] [CrossRef]
- Kalakoti, R.; Nõmm, S.; Bahsi, H. Federated Learning of Explainable AI (FEDXAI) for deep learning-based intrusion detection in IoT networks. Comput. Netw. 2025, 270, 111479. [Google Scholar] [CrossRef]
- Reis, M.I.; Gonçalves, J.N.; Cortez, P.; Carvalho, M.S.; Fernandes, J.M. A context-aware decision support system for selecting explainable artificial intelligence methods in business organizations. Comput. Ind. 2025, 165, 104233. [Google Scholar] [CrossRef]
- Islam, S.; Basheer, N.; Papastergiou, S.; Ciampi, M.; Silvestri, S. Intelligent dynamic cybersecurity risk management framework with explainability and interpretability of AI models for enhancing security and resilience of digital infrastructure. J. Reliab. Intell. Environ. 2025, 11, 12. [Google Scholar] [CrossRef] [PubMed]
- Pękala, B.; Kosior, D.; Rząsa, W.; Garwol, K.; Czuma, J. Unique Method for Prognosis of Risk of Depressive Episodes Using Novel Measures to Model Uncertainty Under Data Privacy. Entropy 2025, 27, 162. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Wang, M.; Cai, Y.; Chang, X.; Liu, Y. Improving the CRCC-DHR Reliability: An Entropy-Based Mimic-Defense-Resource Scheduling Algorithm. Entropy 2025, 27, 208. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Hu, Y.; Yang, X.; Wang, S.; Wang, Y. Urban Flood Resilience Evaluation Based on Heterogeneous Data and Group Decision-Making. Entropy 2024, 26, 755. [Google Scholar] [CrossRef] [PubMed]
- Erbey, A.; Fidan, Ü.; Gündüz, C. A robust hybrid weighting scheme based on IQRBOW and Entropy for MCDM: Stability and advantage criteria in the VIKOR framework. Entropy 2025, 27, 867. [Google Scholar] [CrossRef] [PubMed]
- Pu, J.; Liu, Z. HECM-Plus: Hyper-Entropy Enhanced Cloud Models for Uncertainty-Aware Design Evaluation in Multi-Expert Decision Systems. Entropy 2025, 27, 475. [Google Scholar] [CrossRef] [PubMed]
- Kusztal, K.; Przybyła-Kasperek, M. Distributed Data Classification with Coalition-Based Decision Trees and Decision Template Fusion. Entropy 2025, 27, 1205. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Ma, X.; Zhan, J. Group decision-making in heterogeneous multi-scale information fusion: Integrating overconfident and non-cooperative behaviors. Inf. Fusion 2026, 125, 103401. [Google Scholar] [CrossRef]
- Libório, M.P.; Ekel, P.; D’Angelo, M.F.S.V.; Martínez, L.; Pedrycz, W. Dealing with heterogeneous information in multi-criteria group decision-making problems: A comprehensive design framework. IEEE Access 2025, 13, 114444–114459. [Google Scholar] [CrossRef]
- Alastal, H.; Sharaf, A.; Mahmoud, S.; Alsaidi, O.; Bahroun, Z. Integrating Multiple Criteria Decision-Making Techniques in Sustainable Supplier Selection: A Comprehensive Review. Decis. Mak. Appl. Manag. Eng. 2025, 8, 380–400. [Google Scholar]
- Tong, S.; Sun, B.; Zhang, L.; Chu, X. An approach of multi-criteria group decision making with incomplete information based on formal concept analysis and rough set. Expert Syst. Appl. 2024, 248, 123364. [Google Scholar] [CrossRef]
- Krishankumar, R.; Ravichandran, K.S.; Gandomi, A.H.; Kar, S. Interval-valued probabilistic hesitant fuzzy set-based framework for group decision-making with unknown weight information. Neural Comput. Appl. 2021, 33, 2445–2457. [Google Scholar] [CrossRef]
- Rowe, F.; Jeanneret Medina, M.; Journé, B.; Coëtard, E.; Myers, M. Understanding responsibility under uncertainty: A critical and scoping review of autonomous driving systems. J. Inf. Technol. 2024, 39, 587–615. [Google Scholar] [CrossRef]
- Korycki, Ł.; Krawczyk, B. Adversarial concept drift detection under poisoning attacks for robust data stream mining. Mach. Learn. 2023, 112, 4013–4048. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wang, J.; Mortlock, T.; Khargonekar, P.; Al Faruque, M.A. Hyperdimensional uncertainty quantification for multimodal uncertainty fusion in autonomous vehicles perception. In Proceedings of the 2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 10–17 June 2025; IEEE: New York, NY, USA, 2025; pp. 22306–22316. [Google Scholar]
- Yang, K.; Tang, X.; Li, J.; Wang, H.; Zhong, G.; Chen, J.; Cao, D. Uncertainties in onboard algorithms for autonomous vehicles: Challenges, mitigation, and perspectives. IEEE Trans. Intell. Transp. Syst. 2023, 24, 8963–8987. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Przybyła-Kasperek, M. Entropy Method for Decision Making with Uncertainty. Entropy 2026, 28, 141. https://doi.org/10.3390/e28020141
Przybyła-Kasperek M. Entropy Method for Decision Making with Uncertainty. Entropy. 2026; 28(2):141. https://doi.org/10.3390/e28020141
Chicago/Turabian StylePrzybyła-Kasperek, Małgorzata. 2026. "Entropy Method for Decision Making with Uncertainty" Entropy 28, no. 2: 141. https://doi.org/10.3390/e28020141
APA StylePrzybyła-Kasperek, M. (2026). Entropy Method for Decision Making with Uncertainty. Entropy, 28(2), 141. https://doi.org/10.3390/e28020141
