Some Results on Cumulative Residual Inaccuracy Measure of k-Record Values
Abstract
1. Introduction
2. Cumulative Residual Inaccuracy Measure
3. Properties and the Bounds of the Measure
- Consider two random variables X and Y with survival functions and , respectively, such that where is a strictly increasing function and differentiable almost everywhere with , thenProof.From (8), we can writeNow ⇒ and . Also .By setting all these values in (12), the result is obvious. □Remark 2.In particular, ⇒ . Therefore (11) becomes
- If , where is an integer greater than 1 and and are the survival functions of X and Y, respectively, thenProof.We know that□
- ConsiderThenProof.From (8),Since for a survival function, we have for every integer . Thus,To apply Jensen’s inequality [21], defineand the probability measureLet , which is convex for all . Jensen’s inequality then givesMultiplying both sides by and usingyieldsSubstitute this bound into the expression (15).This completes the proof. □
- Let X denote an absolutely continuous non-negative random variable; thenwhere denotes the expectation of X and is defined in (3).
4. Some Results on Stochastic Ordering
5. Cumulative Inaccuracy for Some Specific Distributions
- Then and this gives . Therefore using (28), we get
6. Application to Extremal Quantum Uncertainty
Relation to Entropic Uncertainty and the Logarithmic Schrödinger Equation
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| CRE | Cumulative Residual Entropy |
| CRI | Cumulative Residual Innacuracy |
| DCI | Dynamic Cumulative Innacuracy |
| Probability Distribution Function |
References
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–432. [Google Scholar] [CrossRef]
- Kerridge, D.F. Inaccuracy and inference. J. R. Stat. Soc. Ser. B 1961, 23, 184–194. [Google Scholar] [CrossRef]
- Rao, M.; Chen, Y.; Vemuri, B.C.; Wang, F. Cumulative residual entropy: A new measure of information. IEEE Trans. Inf. Theory 2004, 50, 1220–1228. [Google Scholar] [CrossRef]
- Asadi, M.; Zohrevand, Y. On the dynamic cumulative residual entropy. J. Stat. Plann. Inference 2007, 137, 1931–1941. [Google Scholar] [CrossRef]
- Di Crescenzo, A.; Longobardi, M. On cumulative entropies. J. Stat. Plann. Inference 2009, 139, 4072–4087. [Google Scholar] [CrossRef]
- Sunoj, S.M.; Linu, M.N. Dynamic cumulative residual Rényi’s entropy. Statistics 2012, 46, 41–56. [Google Scholar] [CrossRef]
- Taneja, H.C.; Kumar, V. On dynamic cumulative residual inaccuracy measure. In Proceedings of the World Congress of Engineering (WCE), London, UK, 4–6 July 2012; Volume I. [Google Scholar]
- Dziubdziela, W.; Kopocinski, B. Limiting properties of the kth record values. Appl. Math. 1976, 15, 187–190. [Google Scholar] [CrossRef]
- Eskandarzadeh, M.; Di Crescenzo, A.; Tahmasebi, S. Cumulative Measure of Inaccuracy and Mutual Information in k-th Lower Record Values. Mathematics 2019, 7, 175. [Google Scholar] [CrossRef]
- Kamps, U. A concept of generalized order statistics. J. Stat. Plann. Inference 1995, 48, 1–23. [Google Scholar] [CrossRef]
- Berred, M. k-Record values and the extreme-value index. J. Stat. Plann. Inference 1995, 45, 49–63. [Google Scholar] [CrossRef]
- Fashandi, M.; Ahmadi, J. Characterizations of symmetric distributions based on Rényi entropy. Stat. Probab. Lett. 2012, 82, 798–804. [Google Scholar] [CrossRef]
- Arnold, B.C.; Balakrishnan, N.; Nagaraja, H.N. Records; Wiley: New York, NY, USA, 1998. [Google Scholar]
- Psarrakos, G.; Navarro, J. Generalized cumulative residual entropy and record values. Metrika 2013, 76, 623–640. [Google Scholar] [CrossRef]
- Krakowski, M. The relevation transform and a generalization of the gamma distribution function. RAIRO-Oper. Res.-Rech. Opérationnelle 1973, 7, 107–120. [Google Scholar] [CrossRef]
- Sankaran, P.G.; Dileep Kumar, M. Reliability properties of proportional hazards relevation transform. Metrika 2019, 82, 441–456. [Google Scholar] [CrossRef]
- Tahmasebi, S.; Eskandarzadeh, M. Generalized cumulative entropy based on kth lower record values. Stat. Probab. Lett. 2017, 126, 164–172. [Google Scholar] [CrossRef]
- Goel, R.; Taneja, H.C.; Kumar, V. Measure of entropy for past lifetime and record statistics. Phys. A 2018, 503, 623–631. [Google Scholar] [CrossRef]
- Weisstein, E.W. Hazard Function. From MathWorld—A Worlfram Resource. 2025. Available online: https://mathworld.wolfram.com/HazardFunction.html (accessed on 6 December 2025).
- Liberto, D. Hazard Rate: Definition, How to Calculate, and Example. 2025. Available online: https://www.investopedia.com/terms/h/hazard-rate.asp (accessed on 29 November 2025).
- Jensen, J.L.W.V. Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Math. 1906, 30, 175–193. [Google Scholar] [CrossRef]
- Goel, R.; Taneja, H.C.; Kumar, V. Measure of inaccuracy and k-record statistics. Bull. Calcutta Math. Soc. 2018, 110, 151–166. [Google Scholar]
- Dannan, F.M.; Neff, P.; Thiel, C. On the sum of squared logarithms inequality and related inequalities. J. Math. Inequal. 2016, 10, 1–17. [Google Scholar] [CrossRef]
- Cameron, A.C.; Trivedi, P.K. Preface. In Microeconometrics; Cambridge University Press: Cambridge, UK, 2005; pp. xxi–xxii. [Google Scholar]
- Shaked, M.; Shanthikumar, J.G. Stochastic Orders; Springer: New York, NY, USA, 2007. [Google Scholar]
- Bernardin, L.; Chin, P.; DeMarco, P.; Geddes, K.O.; Hare, D.E.G.; Heal, K.M.; Labahn, G.; May, J.P.; McCarron, J.; Monagan, M.B.; et al. Maple Programming Guide; Maplesoft, Inc.: Toronto, ON, Canada, 2012. [Google Scholar]
- Kribs, D.W.; Pasieka, A.; Życzkowski, K. Entropy of a Quantum Error Correction Code; World Scientific: Singapore, 2008. [Google Scholar]
- Nielsen, M.A. Information-Theoretic Approach to Quantum Error Correction. Proc. R. Soc. A 1998, 454, 277–304. [Google Scholar] [CrossRef]
- Cafaro, C.; van Loock, P. An Entropic Analysis of Approximate Quantum Error Correction. Phys. A 2014, 404, 34–46. [Google Scholar] [CrossRef]
- Bueno, V.D.C.; Balakrishnan, N. A Cumulative Residual Inaccuracy Measure for Coherent Systems; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
- Choi, S.; Bao, Y.; Qi, X.; Altman, E. Quantum Error Correction in Scrambling Dynamics and Open Systems. Phys. Rev. Lett. 2020, 125, 030505. [Google Scholar] [CrossRef]
- Li, Y. Statistical Mechanics of Quantum Error Correcting Codes. Phys. Rev. B 2021, 103, 104306. [Google Scholar] [CrossRef]
- Onorati, E. Fitting Quantum Noise Models to Tomography Data. Quantum J. 2023, 7, 1197. [Google Scholar] [CrossRef]
- Barrios, R. Exponentiated Weibull Fading Channel Model in Free-Space Optics. IEEE Trans. Commun. 2013, 61, 2594–2602. [Google Scholar]
- Preskill, J. Quantum Error Correction. Caltech Lecture Notes for Physics 229: Quantum Information and Computation, Chapter 7. Available online: https://www.preskill.caltech.edu/ph229/notes/chap7.pdf (accessed on 21 December 2025).
- Golse, F.; Jin, S.; Liu, N. Quantum Algorithms for Uncertainty Quantification. arXiv 2022, arXiv:2209.11220. [Google Scholar] [CrossRef]
- Wirsching, G. Quantum-Inspired Uncertainty Quantification. Front. Comput. Sci. 2022, 4, 662632. [Google Scholar] [CrossRef]
- Engineering and Physical Sciences Research Council. Quantum Uncertainty Quantification (QUQ) Project Overview; University of Exeter: Exeter, UK, 2025. [Google Scholar]
- Halpern, N.; Hayden, P. Entropic uncertainty relations in quantum information theory. arXiv 2019, arXiv:1909.08438. [Google Scholar]
- Berta, M.; Christandl, M.; Colbeck, R.; Renes, J.M.; Renner, R. The uncertainty principle in the presence of quantum memory. Nat. Phys. 2010, 6, 659–662. [Google Scholar] [CrossRef]
- Wehner, S.; Winter, A. Entropic uncertainty relations—A survey. New J. Phys. 2010, 12, 025009. [Google Scholar] [CrossRef]
- Hirschman, I.I. A Note on Entropy. Am. J. Math. 1957, 79, 152–156. [Google Scholar] [CrossRef]
- Beckner, W. Inequalities in Fourier Analysis. Ann. Math. 1975, 102, 159–182. [Google Scholar] [CrossRef]
- Białynicki-Birula, I.; Mycielski, J. Uncertainty relations for information entropy in wave mechanics. Commun. Math. Phys. 1975, 44, 129–132. [Google Scholar] [CrossRef]
- Białynicki-Birula, I.; Mycielski, J. Nonlinear wave mechanics. Ann. Phys. 1976, 100, 62–93. [Google Scholar] [CrossRef]
- Everett, H. Generalized Lagrange Multipliers in the Problem of Boltzmann’s Entropy. Ann. Math. 1957, 66, 591–600. [Google Scholar]
- Maassen, H.; Uffink, J.B.M. Generalized entropic uncertainty relations. Phys. Rev. Lett. 1988, 60, 1103–1106. [Google Scholar] [CrossRef]
- Ding, Z.Y.; Yang, H.; Wang, D.; Yuan, H.; Yang, J.; Ye, L. Experimental investigation of entropic uncertainty relations and coherence uncertainty relations. Phys. Rev. A 2020, 101, 032101. [Google Scholar] [CrossRef]
- Zloshchastiev, K.G. Spontaneous symmetry breaking and mass generation as built-in phenomena in logarithmic nonlinear quantum theory. Acta Phys. Pol. B 2011, 42, 261. [Google Scholar] [CrossRef]
- Zloshchastiev, K.G. Origins of logarithmic nonlinearity in the theory of fluids and beyond. Int. J. Mod. Phys. B 2025, 39, 2530008. [Google Scholar] [CrossRef]
- Scott, T.C.; Glasser, M.L. Kink Soliton Solutions in the Logarithmic Schrödinger Equation. Mathematics 2025, 13, 827. [Google Scholar] [CrossRef]
- Athletics Australia. Australian Para Athletics Records, 2025. Available online: https://www.athletics.com.au/results-records-toplists/records/ (accessed on 21 December 2025).
- USA Track & Field. Record Applications. Available online: https://usatf.org/resources/statistics/record-applications (accessed on 21 December 2025).
- Teegavarapu, R. Statistical Analysis of Hydrologic Variables; Technical report; Tufts University: Medford, MA, USA, 2019. [Google Scholar]
- Vogel, R.M. The value of streamflow record augmentation procedures for estimating low-flow statistics. J. Hydrol. 1991, 127, 15–23. [Google Scholar]
- Dey, R. Weather forecasting using Convex Hull & K-Means clustering. arXiv 2015, arXiv:1501.06456. [Google Scholar]
- Balakrishnan, N.; Buono, F.; Cali, C.; Longobardi, M. Dispersion indices based on Kerridge inaccuracy measure and applications. Comput. Stat. 2023, 53, 5574–5592. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Goel, R.; Kumar, V.; Vehale, S.; Scott, T.C. Some Results on Cumulative Residual Inaccuracy Measure of k-Record Values. Entropy 2026, 28, 17. https://doi.org/10.3390/e28010017
Goel R, Kumar V, Vehale S, Scott TC. Some Results on Cumulative Residual Inaccuracy Measure of k-Record Values. Entropy. 2026; 28(1):17. https://doi.org/10.3390/e28010017
Chicago/Turabian StyleGoel, Ritu, Vikas Kumar, Sarang Vehale, and Tony C. Scott. 2026. "Some Results on Cumulative Residual Inaccuracy Measure of k-Record Values" Entropy 28, no. 1: 17. https://doi.org/10.3390/e28010017
APA StyleGoel, R., Kumar, V., Vehale, S., & Scott, T. C. (2026). Some Results on Cumulative Residual Inaccuracy Measure of k-Record Values. Entropy, 28(1), 17. https://doi.org/10.3390/e28010017

