Multi-Dimensional Quantum-like Resources from Complex Synchronized Networks
Abstract
1. Introduction
2. Quantum-like Dits
2.1. Effects of Intergraph Coupling Geometry on the Spectra of QL-Dits
2.2. Structure and Symmetry of Emergent Eigenvectors
2.3. Spectral Changes with Varying Intergraph Coupling Valency l
3. Cartesian Product of Graphs for Higher-Dimensional QL-Dit Spaces
4. Applications
4.1. Expanding Quantum Cognition and Decision-Making Models
4.2. Circuit Based Hamiltonian Simulation Using QL-Dits
4.3. QL-Dits in Topological Oscillator Networks
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Neeley, M.; Ansmann, M.; Bialczak, R.C.; Hofheinz, M.; Lucero, E.; O’Connell, A.D.; Sank, D.; Wang, H.; Wenner, J.; Cleland, A.N.; et al. Emulation of a Quantum Spin with a Superconducting Phase Qudit. Science 2009, 325, 722–725. [Google Scholar] [CrossRef] [PubMed]
- Cervera-Lierta, A.; Krenn, M.; Aspuru-Guzik, A.; Galda, A. Experimental High-Dimensional Greenberger-Horne-Zeilinger Entanglement with Superconducting Transmon Qutrits. Phys. Rev. Appl. 2022, 17, 024062. [Google Scholar] [CrossRef]
- Yurtalan, M.A.; Shi, J.; Kononenko, M.; Lupascu, A.; Ashhab, S. Implementation of a Walsh-Hadamard Gate in a Superconducting Qutrit. Phys. Rev. Lett. 2020, 125, 180504. [Google Scholar] [CrossRef]
- Ringbauer, M.; Meth, M.; Postler, L.; Stricker, R.; Blatt, R.; Schindler, P.; Monz, T. A universal qudit quantum processor with trapped ions. Nat. Phys. 2022, 18, 1053–1057. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, Y.; Gao, Z.; Yim, J.; Wu, S.; Litchinitser, N.M.; Ge, L.; Feng, L. Integrated preparation and manipulation of high-dimensional flying structured photons. eLight 2024, 4, 10. [Google Scholar] [CrossRef]
- Kues, M.; Reimer, C.; Roztocki, P.; Cortés, L.R.; Sciara, S.; Wetzel, B.; Zhang, Y.; Cino, A.; Chu, S.T.; Little, B.E.; et al. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature 2017, 546, 622–626. [Google Scholar] [CrossRef]
- Pizzimenti, A.J.; Soh, D. Optical Gottesman-Kitaev-Preskill qubit generation via approximate squeezed coherent state superposition breeding. Phys. Rev. A 2024, 110, 062619. [Google Scholar] [CrossRef]
- Chi, Y.; Huang, J.; Zhang, Z.; Mao, J.; Zhou, Z.; Chen, X.; Zhai, C.; Bao, J.; Dai, T.; Yuan, H.; et al. A programmable qudit-based quantum processor. Nat. Commun. 2022, 13, 1166. [Google Scholar] [CrossRef]
- Dogra, S.; Arvind; Dorai, K. Determining the parity of a permutation using an experimental NMR qutrit. Phys. Lett. A 2014, 378, 3452–3456. [Google Scholar] [CrossRef]
- Gedik, Z.; Silva, I.A.; Çakmak, B.; Karpat, G.; Vidoto, E.L.G.; Soares-Pinto, D.O.; deAzevedo, E.R.; Fanchini, F.F. Computational speed-up with a single qudit. Sci. Rep. 2015, 5, 14671. [Google Scholar] [CrossRef] [PubMed]
- Fernández de Fuentes, I.; Botzem, T.; Johnson, M.A.I.; Vaartjes, A.; Asaad, S.; Mourik, V.; Hudson, F.E.; Itoh, K.M.; Johnson, B.C.; Jakob, A.M.; et al. Navigating the 16-dimensional Hilbert space of a high-spin donor qudit with electric and magnetic fields. Nat. Commun. 2024, 15, 1380. [Google Scholar] [CrossRef]
- Leuenberger, M.N.; Loss, D. Quantum computing in molecular magnets. Nature 2001, 410, 789–793. [Google Scholar] [CrossRef]
- Gokhale, P.; Baker, J.M.; Duckering, C.; Brown, N.C.; Brown, K.R.; Chong, F.T. Asymptotic improvements to quantum circuits via qutrits. In Proceedings of the 46th International Symposium on Computer Architecture, Phoenix, AZ, USA, 22–26 June 2019; pp. 554–566. [Google Scholar] [CrossRef]
- Lanyon, B.P.; Barbieri, M.; Almeida, M.P.; Jennewein, T.; Ralph, T.C.; Resch, K.J.; Pryde, G.J.; O’Brien, J.L.; Gilchrist, A.; White, A.G. Simplifying quantum logic using higher-dimensional Hilbert spaces. Nat. Phys. 2009, 5, 134–140. [Google Scholar] [CrossRef]
- Galda, A.; Cubeddu, M.; Kanazawa, N.; Narang, P.; Earnest-Noble, N. Implementing a ternary decomposition of the toffoli gate on fixed-frequency transmon qutrits. arXiv 2021, arXiv:2109.00558. [Google Scholar] [CrossRef]
- Janković, D.; Hartmann, J.G.; Ruben, M.; Hervieux, P.A. Noisy qudit vs multiple qubits: Conditions on gate efficiency for enhancing fidelity. Npj Quantum Inf. 2024, 10, 59. [Google Scholar] [CrossRef]
- Durt, T.; Cerf, N.J.; Gisin, N.; Żukowski, M. Security of quantum key distribution with entangled qutrits. Phys. Rev. A 2003, 67, 012311. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Z.; Sanders, B.C.; Kais, S. Qudits and High-Dimensional Quantum Computing. Front. Phys. 2020, 8, 589504. [Google Scholar] [CrossRef]
- Khrennikov, A. Quantum Bayesianism as the basis of general theory of decision-making. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150245. [Google Scholar] [CrossRef]
- Scholes, G.D. Quantum-like states on complex synchronized networks. Proc. R. Soc. A Math. Phys. Eng. Sci. 2024, 480, 20240209. [Google Scholar] [CrossRef]
- Amati, G.; Scholes, G.D. Quantum information with quantumlike bits. Phys. Rev. A 2025, 111, 062203. [Google Scholar] [CrossRef]
- Scholes, G.D.; Amati, G. Quantum-like Product States Constructed from Classical Networks. Phys. Rev. Lett. 2025, 134, 060202. [Google Scholar] [CrossRef]
- Amati, G.; Scholes, G.D. Encoding quantum-like information in classical synchronizing dynamics. arXiv 2025, arXiv:2504.03852. [Google Scholar] [CrossRef]
- Scholes, G.D. Large coherent states formed from disordered k-regular random graphs. Entropy 2023, 25, 1519. [Google Scholar] [CrossRef]
- Scholes, G.D. Graphs that predict exciton delocalization. arXiv 2025, arXiv:2501.09843. [Google Scholar] [CrossRef]
- Griffiths, T.L.; Chater, N.; Kemp, C.; Perfors, A.; Tenenbaum, J.B. Probabilistic models of cognition: Exploring representations and inductive biases. Trends Cogn. Sci. 2010, 14, 357–364. [Google Scholar] [CrossRef]
- Tenenbaum, J.B.; Kemp, C.; Griffiths, T.L.; Goodman, N.D. How to grow a mind: Statistics, structure, and abstraction. Science 2011, 331, 1279–1285. [Google Scholar] [CrossRef]
- Moore, D.W. Measuring New Types of Question-Order Effects: Additive and Subtractive. Public Opin. Q. 2002, 66, 80–91. [Google Scholar] [CrossRef]
- Tversky, A.; Kahneman, D. Extensional versus intuitive reasoning: The conjunction fallacy in probability judgment. Psychol. Rev. 1983, 90, 293. [Google Scholar] [CrossRef]
- Tesař, J. A quantum model of strategic decision-making explains the disjunction effect in the Prisoner’s Dilemma game. Decision 2020, 7, 43. [Google Scholar] [CrossRef]
- Khrennikov, A. Ubiquitous Quantum Structure; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar] [CrossRef]
- Khrennivov, A. Classical and quantum mechanics on information spaces with applications to cognitive, psychological, social, and anomalous phenomena. Found. Phys. 1999, 29, 1065–1098. [Google Scholar] [CrossRef]
- Khrennikov, A.Y.; Haven, E. Quantum mechanics and violations of the sure-thing principle: The use of probability interference and other concepts. J. Math. Psychol. 2009, 53, 378–388. [Google Scholar] [CrossRef]
- Aerts, D.; Aerts, S. Applications of quantum statistics in psychological studies of decision processes. Found. Sci. 1995, 1, 85–97. [Google Scholar] [CrossRef]
- Atmanspacher, H.; Römer, H.; Walach, H. Weak quantum theory: Complementarity and entanglement in physics and beyond. Found. Phys. 2002, 32, 379–406. [Google Scholar] [CrossRef]
- Bruza, P.; Busemeyer, J.R.; Gabora, L. Introduction to the special issue on quantum cognition. J. Math. Psychol. 2009, 53, 303–305. [Google Scholar] [CrossRef]
- Pothos, E.M.; Busemeyer, J.R. Quantum cognition. Annu. Rev. Psychol. 2022, 73, 749–778. [Google Scholar] [CrossRef] [PubMed]
- Osgood, C.; Suci, G.; Tannenbaum, P. The Measurement of Meaning; Number 47 in Illini Book, IB 47; University of Illinois Press: Champaign, IL, USA, 1957. [Google Scholar]
- Yearsley, J.M.; Trueblood, J.S. A quantum theory account of order effects and conjunction fallacies in political judgments. Psychon. Bull. Rev. 2018, 25, 1517–1525. [Google Scholar] [CrossRef] [PubMed]
- Fauseweh, B. Quantum many-body simulations on digital quantum computers: State-of-the-art and future challenges. Nat. Commun. 2024, 15, 2123. [Google Scholar] [CrossRef] [PubMed]
- Bauer, B.; Bravyi, S.; Motta, M.; Chan, G.K.L. Quantum algorithms for quantum chemistry and quantum materials science. Chem. Rev. 2020, 120, 12685. [Google Scholar] [CrossRef]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Orús, R. A practical introduction to tensor networks: Matrix product states and projected entangled pair states. Ann. Phys. 2014, 349, 117–158. [Google Scholar] [CrossRef]
- Carleo, G.; Troyer, M. Solving the quantum many-body problem with artificial neural networks. Science 2017, 355, 602–606. [Google Scholar] [CrossRef]
- Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2018, 2, 79. [Google Scholar] [CrossRef]
- Scholes, G.D. Dynamics in an emergent quantum-like state space generated by a nonlinear classical network. arXiv 2025, arXiv:2501.07500. [Google Scholar] [CrossRef]
- Vlasov, A.Y. Noncommutative tori and universal sets of nonbinary quantum gates. J. Math. Phys. 2002, 43, 2959–2964. [Google Scholar] [CrossRef]
- Brennen, G.K.; O’Leary, D.P.; Bullock, S.S. Criteria for exact qudit universality. Phys. Rev. A 2005, 71, 052318. [Google Scholar] [CrossRef]
- Muthukrishnan, A.; Stroud, C.R. Multivalued logic gates for quantum computation. Phys. Rev. A 2000, 62, 052309. [Google Scholar] [CrossRef]
- Bertlmann, R.A.; Krammer, P. Bloch vectors for qudits. J. Phys. A Math. Theor. 2008, 41, 235303. [Google Scholar] [CrossRef]
- Asadian, A.; Erker, P.; Huber, M.; Klöckl, C. Heisenberg-Weyl Observables: Bloch vectors in phase space. Phys. Rev. A 2016, 94, 010301. [Google Scholar] [CrossRef]
- Brüning, E.; Mäkelä, H.; Messina, A.; and, F.P. Parametrizations of density matrices. J. Mod. Opt. 2012, 59, 1–20. [Google Scholar] [CrossRef]
- Pudda, F.; Chizzini, M.; Crippa, L. Generalised Quantum Gates for Qudits and their Application in Quantum Fourier Transform. arXiv 2024, arXiv:2410.05122. [Google Scholar] [CrossRef]
- Kuramoto, Y. Self-entrainment of a population of coupled non-linear oscillators. In Proceedings of the International Symposium on Mathematical Problems in Theoretical Physics, Kyoto, Japan, 23–29 January 1975; Springer: Berlin/Heidelberg, Germany, 2005; pp. 420–422. [Google Scholar]
- Rodrigues, F.A.; Peron, T.K.D.; Ji, P.; Kurths, J. The Kuramoto model in complex networks. Phys. Rep. 2016, 610, 1–98. [Google Scholar] [CrossRef]
- Huber, S.D. Topological mechanics. Nat. Phys. 2016, 12, 621–623. [Google Scholar] [CrossRef]
- Lu, L.; Joannopoulos, J.D.; Soljačić, M. Topological photonics. Nat. Photonics 2014, 8, 821–829. [Google Scholar] [CrossRef]
- Sone, K.; Ashida, Y.; Sagawa, T. Topological synchronization of coupled nonlinear oscillators. Phys. Rev. Res. 2022, 4, 023211. [Google Scholar] [CrossRef]
- Di, F.; Zhang, W.; Zhang, X. Observation of non-Hermitian topological synchronization. Commun. Phys. 2025, 8, 78. [Google Scholar] [CrossRef]
- Su, W.P.; Schrieffer, J.R.; Heeger, A.J. Solitons in Polyacetylene. Phys. Rev. Lett. 1979, 42, 1698–1701. [Google Scholar] [CrossRef]
- Thouless, D.J.; Kohmoto, M.; Nightingale, M.P.; den Nijs, M. Quantized Hall Conductance in a Two-Dimensional Periodic Potential. Phys. Rev. Lett. 1982, 49, 405–408. [Google Scholar] [CrossRef]
- Kitaev, A. Fault-tolerant quantum computation by anyons. Ann. Phys. 2003, 303, 2–30. [Google Scholar] [CrossRef]
- Nayak, C.; Simon, S.H.; Stern, A.; Freedman, M.; Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 2008, 80, 1083–1159. [Google Scholar] [CrossRef]
- Allam, A.; Filanovsky, I.M.; Oliveira, L.B.; Fernandes, J.R. Synchronization of mutually coupled LC-oscillators. In Proceedings of the 2006 IEEE International Symposium on Circuits and Systems, Kos, Greece, 21–24 May 2006; p. 4. [Google Scholar] [CrossRef]
- Maffezzoni, P.; Bahr, B.; Zhang, Z.; Daniel, L. Oscillator Array Models for Associative Memory and Pattern Recognition. IEEE Trans. Circuits Syst. I Regul. Pap. 2015, 62, 1591–1598. [Google Scholar] [CrossRef]
- Raychowdhury, A.; Parihar, A.; Smith, G.H.; Narayanan, V.; Csaba, G.; Jerry, M.; Porod, W.; Datta, S. Computing With Networks of Oscillatory Dynamical Systems. Proc. IEEE 2019, 107, 73–89. [Google Scholar] [CrossRef]
- Flovik, V.; Macia, F.; Wahlström, E. Describing synchronization and topological excitations in arrays of magnetic spin torque oscillators through the Kuramoto model. Sci. Rep. 2016, 6, 32528. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saha, D.; Scholes, G.D. Multi-Dimensional Quantum-like Resources from Complex Synchronized Networks. Entropy 2025, 27, 963. https://doi.org/10.3390/e27090963
Saha D, Scholes GD. Multi-Dimensional Quantum-like Resources from Complex Synchronized Networks. Entropy. 2025; 27(9):963. https://doi.org/10.3390/e27090963
Chicago/Turabian StyleSaha, Debadrita, and Gregory D. Scholes. 2025. "Multi-Dimensional Quantum-like Resources from Complex Synchronized Networks" Entropy 27, no. 9: 963. https://doi.org/10.3390/e27090963
APA StyleSaha, D., & Scholes, G. D. (2025). Multi-Dimensional Quantum-like Resources from Complex Synchronized Networks. Entropy, 27(9), 963. https://doi.org/10.3390/e27090963