A Quasi-Monte Carlo Method Based on Neural Autoregressive Flow
Abstract
1. Introduction
1.1. Quasi-Monte Carlo
1.2. Normalizing Flows and Neural Autoregressive Flow
2. Methodology
2.1. Neural Autoregressive Flow Architecture
2.2. Parameterization of Transport Map
2.3. Hidden Variables
3. Simulation
4. A-Share Data Application
4.1. Model Description
4.2. Empirical Derivation of the Target Function
4.3. Operational Process for Model Implementation
4.4. Data Selection and Temporal Structure
4.5. Dynamic Stock Selection
4.6. Empirical Results and Model Performance
4.7. Flexibility Beyond Normality
5. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Caflisch, R.E. Monte carlo and quasi-monte carlo methods. Acta Numer. 1998, 7, 1–49. [Google Scholar] [CrossRef]
- Kalos, M.H.; Whitlock, P.A. Monte Carlo Methods; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Glasserman, P. Monte Carlo Methods in Financial Engineering; Springer: New York, NY, USA, 2004; Volume 53. [Google Scholar]
- Boyle, P.; Broadie, M.; Glasserman, P. Monte Carlo methods for security pricing. J. Econ. Dyn. Control 1997, 21, 1267–1321. [Google Scholar] [CrossRef]
- Niederreiter, H. Random Number Generation and Quasi-Monte Carlo Methods; SIAM: Philadelphia, PA, USA, 1992. [Google Scholar]
- Dick, J.; Kuo, F.Y.; Sloan, I.H. High-dimensional integration: The quasi-Monte Carlo way. Acta Numer. 2013, 22, 133–288. [Google Scholar] [CrossRef]
- Papageorgiou, A.; Paskov, S. Deterministic simulation for risk management. J. Portf. Manag. 1999, 25, 122–127. [Google Scholar] [CrossRef]
- Leobacher, G.; Pillichshammer, F. Introduction to Quasi-Monte Carlo Integration and Applications; Springer: Cham, Switzerland, 2014. [Google Scholar]
- Owen, A.B. Randomly permuted (t, m, s)-nets and (t, s)-sequences. In Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing: Proceedings of a Conference at the University of Nevada, Las Vegas, NV, USA, 23–25 June 1994; Springer: New York, NY, USA, 1995; pp. 299–317. [Google Scholar]
- Lemieux, C. Using quasi–Monte Carlo in practice. In Monte Carlo and Quasi-Monte Carlo Sampling; Springer: New York, NY, USA, 2008; pp. 1–46. [Google Scholar]
- Wang, X.; Han, Y.; Leung, V.C.; Niyato, D.; Yan, X.; Chen, X. Convergence of edge computing and deep learning: A comprehensive survey. IEEE Commun. Surv. Tutor. 2020, 22, 869–904. [Google Scholar] [CrossRef]
- Tabak, E.G.; Vanden-Eijnden, E. Density estimation by dual ascent of the log-likelihood. Commun. Math. Sci. 2010, 8, 217–233. [Google Scholar] [CrossRef]
- Tabak, E.G.; Turner, C.V. A family of nonparametric density estimation algorithms. Commun. Pure Appl. Math. 2013, 66, 145–164. [Google Scholar] [CrossRef]
- Papamakarios, G.; Nalisnick, E.; Rezende, D.J.; Mohamed, S.; Lakshminarayanan, B. Normalizing flows for probabilistic modeling and inference. J. Mach. Learn. Res. 2021, 22, 1–64. [Google Scholar]
- Rezende, D.; Mohamed, S. Variational inference with normalizing flows. In Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 1530–1538. [Google Scholar]
- Agnelli, J.P.; Cadeiras, M.; Tabak, E.G.; Turner, C.V.; Vanden-Eijnden, E. Clustering and classification through normalizing flows in feature space. Multiscale Model. Simul. 2010, 8, 1784–1802. [Google Scholar] [CrossRef]
- Rippel, O.; Adams, R.P. High-dimensional probability estimation with deep density models. arXiv 2013, arXiv:1302.5125. [Google Scholar] [CrossRef]
- Dinh, L.; Krueger, D.; Bengio, Y. Nice: Non-linear independent components estimation. arXiv 2014, arXiv:1410.8516. [Google Scholar]
- Kingma, D.P.; Salimans, T.; Jozefowicz, R.; Chen, X.; Sutskever, I.; Welling, M. Improved variational inference with inverse autoregressive flow. In Advances in Neural Information Processing Systems 29 (NIPS 2016); NeurlPS: La Jolla, CA, USA, 2016; Volume 29. [Google Scholar]
- Germain, M.; Gregor, K.; Murray, I.; Larochelle, H. Made: Masked autoencoder for distribution estimation. In Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 881–889. [Google Scholar]
- Huang, C.W.; Krueger, D.; Lacoste, A.; Courville, A. Neural autoregressive flows. In Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 2078–2087. [Google Scholar]
- Steinley, D.; Hoffman, M.; Brusco, M.J.; Sher, K.J. A method for making inferences in network analysis: Comment on Forbes, Wright, Markon, and Krueger. J. Abnorm. Psychol. 2017, 126, 1000–1010. [Google Scholar] [CrossRef]
- De Cao, N.; Aziz, W.; Titov, I. Block neural autoregressive flow. In Proceedings of the Uncertainty in Artificial Intelligence, Virtual, 3–6 August 2020; pp. 1263–1273. [Google Scholar]
- Liu, S. Transport Quasi-Monte Carlo. arXiv 2024, arXiv:2412.16416. [Google Scholar] [CrossRef]
- Markowitz, H. Modern portfolio theory. J. Financ. 1952, 7, 77–91. [Google Scholar]
- Jin, Y.; Jorion, P. Firm value and hedging: Evidence from US oil and gas producers. J. Financ. 2006, 61, 893–919. [Google Scholar] [CrossRef]
- Cont, R. Empirical properties of asset returns: Stylized facts and statistical issues. Quant. Financ. 2001, 1, 223–236. [Google Scholar] [CrossRef]
- Sharpe, W.F. Capital asset prices: A theory of market equilibrium under conditions of risk. J. Financ. 1964, 19, 425–442. [Google Scholar]
- Black, F.; Scholes, M. The pricing of options and corporate liabilities. J. Political Econ. 1973, 81, 637–654. [Google Scholar] [CrossRef]
- Fama, E.F. The behavior of stock-market prices. J. Bus. 1965, 38, 34–105. [Google Scholar] [CrossRef]
- Elton, E.J.; Gruber, M.J.; Blake, C.R. Common Factors in Mutual Fund Returns; New York University: New York, NY, USA, 1997. [Google Scholar]
- Mandelbrot, B. The variation of certain speculative prices. J. Bus. 1963, 36, 394–419. [Google Scholar] [CrossRef]
- Praetz, P.D. The distribution of share price changes. J. Bus. 1972, 45, 49–55. [Google Scholar] [CrossRef]
- Lange, K.L.; Little, R.J.; Taylor, J.M. Robust statistical modeling using the t distribution. J. Am. Stat. Assoc. 1989, 84, 881–896. [Google Scholar] [CrossRef]
- Azzalini, A.; Capitanio, A. Statistical applications of the multivariate skew normal distribution. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 1999, 61, 579–602. [Google Scholar] [CrossRef]
- Azzalini, A.; Capitanio, A. Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2003, 65, 367–389. [Google Scholar] [CrossRef]
- Nelsen, R.B. An Introduction to Copulas; Springer: New York, NY, USA, 2006. [Google Scholar]
- McNeil, A.J.; Frey, R.; Embrechts, P. Quantitative Risk Management: Concepts, Techniques and Tools; Princeton University Press: Princeton, NJ, USA, 2015. [Google Scholar]
- Bollerslev, T. Generalized autoregressive conditional heteroskedasticity. J. Econom. 1986, 31, 307–327. [Google Scholar] [CrossRef]
Integral | NAF + RQMC | NAF + MC | IS + RQMC |
---|---|---|---|
0.0008 | 0.0225 | 0.1347 | |
0.0127 | 0.1575 | 0.4336 | |
0.0178 | 0.0697 | 1.0069 | |
0.0913 | 0.1308 | 0.7775 | |
0.5729 | 0.8713 | 2.1667 | |
0.6600 | 0.9836 | 2.9241 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Y.; Xi, W. A Quasi-Monte Carlo Method Based on Neural Autoregressive Flow. Entropy 2025, 27, 952. https://doi.org/10.3390/e27090952
Wei Y, Xi W. A Quasi-Monte Carlo Method Based on Neural Autoregressive Flow. Entropy. 2025; 27(9):952. https://doi.org/10.3390/e27090952
Chicago/Turabian StyleWei, Yunfan, and Wei Xi. 2025. "A Quasi-Monte Carlo Method Based on Neural Autoregressive Flow" Entropy 27, no. 9: 952. https://doi.org/10.3390/e27090952
APA StyleWei, Y., & Xi, W. (2025). A Quasi-Monte Carlo Method Based on Neural Autoregressive Flow. Entropy, 27(9), 952. https://doi.org/10.3390/e27090952