Advances of Quantum Key Distribution and Network Nonlocality
Abstract
1. Introduction
2. Bell Nonlocality
3. Quantum Key Distribution
3.1. CV-MDI-QKD
3.2. TF-QKD
3.3. AMDI-QKD
3.4. Discussion
4. Network Nonlocality
4.1. Generalized n-Locality Inequalities
4.2. Sharing Network Nonlocality
4.3. Detecting/Verifying Network Nonlocality
4.4. Full Network Nonlocality
4.5. Genuine Network Nonlocality and Device-Independent QKD
5. Outlook
Funding
Conflicts of Interest
References
- Bell, J. On the Einstein Podolsky Rosen paradox. Physics 1964, 1, 195–200. [Google Scholar] [CrossRef]
- Einstein, A.; Podolsky, B.; Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 1935, 47, 777–780. [Google Scholar] [CrossRef]
- Bohm, D.; Aharonov, Y. Discussion of experimental proof for the paradox of Einstein, Rosen, and Podolsky. Phys. Rev. 1957, 108, 1070–1076. [Google Scholar] [CrossRef]
- Freedman, S.; Clauser, J. Experimental test of local hidden-variable theories. Phys. Rev. Lett. 1972, 28, 938–941. [Google Scholar] [CrossRef]
- Aspect, A.; Dalibard, J.; Roger, G. Experimental test of Bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 1982, 49, 1804–1807. [Google Scholar] [CrossRef]
- Google Quantum AI and Collaborators. Quantum error correction below the surface code threshold. Nature 2025, 638, 920–926. [Google Scholar] [CrossRef]
- Shakib, K.; Rahman, M.; Islam, M.; Chowdhury, M. Impersonation attack using quantum Shor’s algorithm against blockchain-based vehicular Ad-Hoc network. IEEE Trans. Intell. Transp. Syst. 2025, 26, 6530–6544. [Google Scholar] [CrossRef]
- Piron, R.; Habibie, M.I.; Goursaud, C. Mixed Grover: A hybrid version to improve Grover’s algorithm for unstructured database search. IEEE Trans. Quantum Eng. 2025, 6, 3101113. [Google Scholar] [CrossRef]
- Stéphane, V.; Ramy, T.; Thomas, J. A reconfigurable entanglement distribution network suitable for connecting multiple ground nodes with a satellite. EPJ Quantum Technol. 2025, 12, 8. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Jia, X. Quantum key distribution with chromatic codes. Light 2025, 14, 126. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Liu, G.; Zhang, X.; Ma, X. Advantage distillation for quantum key distribution. Quantum Sci. Technol. 2025, 10, 015050. [Google Scholar] [CrossRef]
- Sinha, A.; Macaluso, A.; Klusch, M. Nav-Q: Quantum deep reinforcement learning for collision-free navigation of self-driving cars. Quantum Mach. Intell. 2025, 7, 19. [Google Scholar] [CrossRef]
- Shay, E.; Gur, L.; Michael, W.; Claudio, B.; Edoardo, C.; Dan, O. Massively multiplexed wide-field photon correlation sensing. Optica 2025, 12, 451–458. [Google Scholar] [CrossRef]
- Ishiwata, H.; Song, J.; Shigeno, Y.; Nishimura, K.; Yanai, N. Molecular quantum nanosensors functioning in living cells. ChemRxiv 2025, 1–14. [Google Scholar] [CrossRef]
- Wei, S.; Jing, B.; Zhang, X.; Liao, J.; Yuan, C.; Fan, B.; Lyu, C.; Zhou, D.; Wang, Y.; Deng, G.; et al. Towards real-world quantum networks: A review. Laser Photonics Rev. 2022, 16, 2100219. [Google Scholar] [CrossRef]
- Lee, Y.; Dai, W.; Don, T.; Dirk, E. Quantum network utility: A framework for benchmarking quantum networks. Proc. Natl. Acad. Sci. USA 2024, 121, e2314103121. [Google Scholar] [CrossRef]
- Divincenzo, D.; Shor, P. Fault-tolerant error correction with efficient quantum codes. Phys. Rev. Lett. 1996, 77, 3260–3263. [Google Scholar] [CrossRef]
- DiVincenzo, D. Quantum computation. Science 1995, 270, 255–261. [Google Scholar] [CrossRef]
- Bennett, C.H.; Bessette, F.; Brassard, G.; Salvail, L.; Smolin, J. Experimental quantum cryptography. J. Cryptol. 1992, 5, 3–28. [Google Scholar] [CrossRef]
- Pan, J. Progress of the quantum experiment science satellite (QUESS) Micius Project. Chin. J. Space Sci. 2020, 40, 643–647. [Google Scholar] [CrossRef]
- Liu, Q.; Huang, Y.; Du, Y.; Zhao, Z.; Geng, M.; Zhang, Z.; Wei, K. Advances in chip-based quantum key distribution. Entropy 2022, 24, 1334. [Google Scholar] [CrossRef]
- Kržič, A.; Sharma, S.; Spiess, C.; Chandrashekara, U.; Töpfer, S.; Sauer, G.; Luis, C.; Kopf, T.; Petscharnig, S.; Grafenauer, T.; et al. Towards metropolitan free-space quantum networks. npj Quantum Inf. 2023, 9, 95. [Google Scholar] [CrossRef]
- Joshua, D.; Samuel, F.; R Krishna, M. Demonstration of a three-node wavelength division multiplexed hybrid quantum-classical network through multicore fiber. J. Opt. Commun. Netw. 2025, 17, 71–80. [Google Scholar] [CrossRef]
- Alejandro, P.; Nicolas, G.; Armin, T. Full network nonlocality. Phys. Rev. Lett. 2022, 128, 010403. [Google Scholar] [CrossRef]
- Gen, K.; Yugo, S.; Kei, M. Relaxed Bell inequality as a trade-off relation between measurement dependence and hiddenness. Phys. Rev. A 2023, 108, 022214. [Google Scholar] [CrossRef]
- Carlos, V.; Ravishankar, R.; Adán, C. Test of the physical significance of Bell non-locality. Nat. Commun. 2025, 16, 4390. [Google Scholar] [CrossRef]
- Manuel, S. The method of everything vs. experimenter bias of loophole-free Bell experiments. Front. Res. Metr. Anal. 2024, 9, 1404371. [Google Scholar] [CrossRef]
- Collins, D.; Gisin, N.; Linden, N.; Massar, S.; Popescu, S. Bell inequalities for arbitrarily high dimensional systems. Phys. Rev. Lett. 2002, 88, 040404. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xiao, S.; Han, K.; Guo, Z.; Cao, H. Continuous and discrete local hidden variable theories are equivalent. Inf. Sci. 2023, 647, 119440. [Google Scholar] [CrossRef]
- Khrennikov, A. CHSH inequality: Quantum probabilities as classical conditional probabilities. Found. Phys. 2015, 45, 711–725. [Google Scholar] [CrossRef]
- Hardy, L. Nonlocality for two particles without inequalities for almost all entangled states. Phys. Rev. Lett. 1993, 71, 1665–1668. [Google Scholar] [CrossRef]
- Chen, J.; Cabello, A.; Xu, Z.; Su, H.; Wu, C.; Kwek, L. Hardy’s paradox for high-dimensional systems: Beyond Hardy’s limit. Phys. Rev. A 2013, 88, 062116. [Google Scholar] [CrossRef]
- Chen, K.; Mal, S.; Tabia, G.; Liang, Y. Hardy-type paradoxes for an arbitrary symmetric bipartite Bell scenario. Phys. Rev. A 2024, 109, 042206. [Google Scholar] [CrossRef]
- Chakraborty, A.; Agarwal, K.; Naik, S.; Banik, M. Stronger nonlocality in GHZ states: A step beyond the conventional GHZ paradox. arXiv 2024, arXiv:2409.14711. [Google Scholar] [CrossRef]
- Ye, H.; Yang, X.; Luo, M. Verification of quantum networks using the GHZ paradox. Commun. Theor. Phys. 2024, 76, 105102. [Google Scholar] [CrossRef]
- Luo, Y.; Su, H.; Huang, H.; Wang, X.; Yang, T.; Li, L.; Liu, N.; Chen, J.; Lu, C.; Pan, J. Experimental test of generalized Hardy’s paradox. Sci. Bull. 2018, 63, 1611–1615. [Google Scholar] [CrossRef]
- Pan, J.; Bouwmeester, D.; Daniell, M.; Bouwmeester, H.; Zeilinger, A. Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement. Nature 2000, 403, 515–519. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, J.; Meng, H.; Yang, M.; Li, Q.; Meng, Y.; Su, H.; Chen, J.; Sun, K.; Xun, J.; et al. Experimental test of the Greenberger-Horne- Zeilinger-type paradoxes in and beyond graph states. npj Quantum Inform. 2021, 7, 66. [Google Scholar] [CrossRef]
- Hensen, B.; Bernien, H.; Dréau, A.; Reiserer, A.; Kalb, N.; Blok, M.; Ruitenberg, J.; Vermeulen, R.; Schouten, R.; Abellán, C.; et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 2015, 526, 682–686. [Google Scholar] [CrossRef] [PubMed]
- Hensen, B.; Kalb, N.; Blok, M.; Dréau, A.; Reiserer, A.; Vermeulen, R.; Schouten, R.; Taminiau, T.; Hanson, R. Loophole-free Bell test using electron spins in diamond: Second experiment and additional analysis. Sci. Rep. 2016, 6, 30289. [Google Scholar] [CrossRef]
- Adrian, K. Stronger tests of the collapse-locality loophole in Bell experiments. Phys. Rev. A 2020, 101, 012102. [Google Scholar] [CrossRef]
- Yadav, A.; Mishra, S.; Pathak, A. Partial loopholes free device-independent quantum random number generator using IBM’s quantum computers. Phys. Scr. 2024, 99, 115103. [Google Scholar] [CrossRef]
- Yazeed, K.; Ewan, M.; Gerard, J.; Shang, Y.; Ian, A.; Raj, B. A tractable protocol for detection-loophole-free Bell tests over long distances. arXiv 2025, arXiv:2506.05048v1. [Google Scholar]
- Boreiri, S.; Brunner, N.; Sekatski, P. Bell nonlocality in quantum networks with unreliable sources: Loophole-free postelection via self-testing. arXiv 2025, arXiv:2501.14027. [Google Scholar]
- Gigena, N.; Panwar, E.; Scala, G.; Araújo, M.; Farkas, M.; Chaturvedi, A. Self-testing tilted strategies for maximal loophole-free nonlocality. npj Quantum Inf. 2025, 11, 82. [Google Scholar] [CrossRef]
- Appel, W.; Emmanuel, K. Mathematics for Physics and Physicist, 2nd ed.; Princeton University Press: Princeton, NJ, USA, 2007; pp. 249–376. [Google Scholar]
- Steinacker, P.; Tanttu, T.; Lim, W.; Stuyck, N.; Feng, M.; Serrano, S.; Vahapoglu, E.; Su, R.; Huang, J.; Jones, C.; et al. Bell inequality violation in gate-defined quantum dots. Nat. Commun. 2025, 16, 3606. [Google Scholar] [CrossRef]
- Yang, X.; Yu, X.; Li, L.; Zhao, X.; Zheng, T.; Zhang, C.; Li, C.; Guo, G. Experimental realization of Wheeler’s delayed-choice experiment with dual selections. Sci. China Phys. Mech. Astron. 2025, 68, 250312. [Google Scholar] [CrossRef]
- Youn, S. A Khintchine inequality for central Fourier series on non-Kac compact quantum groups. arXiv 2024, arXiv:2408.13519. [Google Scholar] [CrossRef]
- Nikita, A.; Evgeniy, O.; Aleksey, K. Fourier expansion in variational quantum algorithms. Phys. Rev. A 2023, 108, 032406. [Google Scholar] [CrossRef]
- Thais, L.; Lucas, B.; Leandro, A. Fourier-based quantum signal processing. arXiv 2022, arXiv:2206.02826v1. [Google Scholar] [CrossRef]
- Jaffe, A.; Jiang, C.; Liu, Z.; Ren, Y.; Wu, J. Quantum Fourier analysis. Proc. Natl. Acad. Sci. USA 2020, 117, 10715–10720. [Google Scholar] [CrossRef] [PubMed]
- Emir, D.; Amina, T.; Ehsan, F.; Ramana, K.; Peppino, F.; Miroslav, V.; Miralem, M. Quantum key distribution networks-key management: A survey. ACM Comput. Surv. 2005, 57, 257. [Google Scholar] [CrossRef]
- Li, Y.; Cai, W.; Ren, J.; Wang, C.; Yang, M.; Zhang, L.; Wu, H.; Chang, L.; Wu, J.; Jin, B.; et al. Microsatellite-based real-time quantum key distribution. Nature 2025, 640, 47–54. [Google Scholar] [CrossRef]
- Tagliavacche, N.; Borghi, M.; Guarda, G.; Ribezzo, D.; Liscidini, M.; Bacco, D.; Galli, M.; Bajoni, D. Frequency-bin entanglement-based quantum key distribution. npj Quantum Inf. 2025, 11, 60. [Google Scholar] [CrossRef]
- Yu, H.; Sciara, S.; Chemnitz, M.; Montaut, N.; Crockett, B.; Fischer, B.; Helsten, R.; Wetzel, B.; Goebel, T.; Krämer, R.; et al. Quantum key distribution implemented with d-level time-bin entangled photons. Nat. Commun. 2025, 16, 171. [Google Scholar] [CrossRef]
- Zhuang, S.; Li, B.; Zheng, M.; Zeng, Y.; Wu, H.; Li, G.; Yao, Q.; Xie, X.; Li, Y.; Qin, H.; et al. Ultrabright entanglement based quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 2025, 134, 230801. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, W.; Pan, J.; Lu, Y.; Li, W.; Li, Z.; Huang, Y.; Ma, X.; Xu, F.; Pan, J. Experimental mode-pairing quantum key distribution surpassing the repeaterless bound. Phys. Rev. X 2025, 15, 021037. [Google Scholar] [CrossRef]
- Primaatmaja, I.; Liang, C.; Zhang, G.; Haw, J.; Wang, C.; Lim, C. Discrete-variable quantum key distribution with homodyne detection. Quantum 2022, 6, 613. [Google Scholar] [CrossRef]
- Pirandola, S.; Papanastasiou, P. Improved composable key rates for CV-QKD. Phys. Rev. Res. 2024, 6, 023321. [Google Scholar] [CrossRef]
- Lee, C.; Sohn, I.; Lee, W. Eavesdropping Detection in BB84 Quantum Key Distribution Protocols. IEEE Trans. Netw. Serv. Manag. 2022, 19, 2689–2701. [Google Scholar] [CrossRef]
- Win, M.; Khin, T. Analysis of Quantum Key Distribution Protocols. In Proceedings of the IEEE Conference on Computer Applications (ICCA), Yangon, Myanmar, 27–28 February 2023. [Google Scholar] [CrossRef]
- Lo, H.; Curty, M.; Qi, B. Measurement device independent quantum key distribution. Phys. Rev. Lett. 2012, 108, 130503. [Google Scholar] [CrossRef]
- Alasdair, I.; Cillian, H.; Masoud, G.; Panagiotis, P.; Alexandros, M.; Gaetana, S.; Adnan, A.; Tobias, G.; Stefano, P. An overview of CV-MDI-QKD. arXiv 2025, arXiv:2501.09818v1. [Google Scholar]
- Xu, F.; Marcos, C.; Qi, B.; Qian, L.; Lo, H. Discrete-variable measurement-device-independent quantum key distribution suitable for metropolitan networks. Nat. Photonics 2015, 9, 772–773. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, P.; Liu, J.; Du, S.; Liu, W.; Lu, A.; Wang, X.; Li, Y. Experimental demonstration of continuous-variable measurement-device-independent quantum key distribution over optical fiber. Optica 2022, 9, 492–500. [Google Scholar] [CrossRef]
- Adnan, A.; Cédric, B.; Ivan, D.; Nitin, J.; Axl, B.; Sarah, B.; Ulrik, L.; Xin, Y.; Tobias, G. Continuous-variable quantum key distribution at 10 GBaud using an integrated photonic-electronic receiver. Optica 2024, 11, 1197–1204. [Google Scholar] [CrossRef]
- Li, L.; Wang, T.; Li, X.; Huang, P.; Guo, Y.; Lu, L.; Zhou, L.; Zeng, G. Continuous-variable quantum key distribution with on-chip light sources. Photonics Res. 2023, 11, 504–516. [Google Scholar] [CrossRef]
- Li, L.; Wang, T.; Huang, P.; Xu, Y.; Liu, X.; Zhao, H.; Zeng, G. Practical source security of on-chip continuous variable measurement device independent quantum key distribution. In Proceedings of the PhotonIcs & Electromagnetics Research Symposium (PIERS), Chengdu, China, 21–25 April 2024. [Google Scholar] [CrossRef]
- Adnan, A.; Ulrik, L.; Tobias, G. High-rate continuous-variable measurement device-independent quantum key distribution with finite-size security. Quantum Sci. Technol. 2025, 10, 025032. [Google Scholar] [CrossRef]
- Lucamarini, M.; Yuan, Z.L.; Dynes, J.; Shields, A. Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature 2018, 557, 400–403. [Google Scholar] [CrossRef]
- Pirandola, S.; Laurenza, R.; Ottaviani, C.; Banchi, L. Fundamental limits of repeaterless quantum communications. Nat. Commun. 2017, 8, 15043. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Yin, Z.; He, D.; Chen, W.; Wang, R.; Ye, P.; Zhou, Y.; Fan-Yuan, G.-J.; Wang, F.; Chen, W.; et al. Twin-field quantum key distribution over 830-km fibre. Nat. Photon. 2022, 16, 154–161. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, W.; Jiang, C.; Chen, J.; Ma, D.; Zhang, C.; Pan, W.; Dong, H.; Xiong, J.; Zhang, C.; et al. 1002 km twin-field quantum key distribution with finite-key analysis. Quantum Front. 2023, 2, 16. [Google Scholar] [CrossRef]
- Wang, X.; Yu, Z.; Hu, X. Twin-field quantum key distribution with large misalignment error. Phys. Rev. A 2018, 98, 062323. [Google Scholar] [CrossRef]
- Yu, Z.; Zhou, Y.; Wang, X. Three-intensity decoy-state method for measurement-device-independent quantum key distribution. Phys. Rev. A 2013, 88, 062339. [Google Scholar] [CrossRef]
- Clivati, C.; Meda, A.; Donadello, S.; Virzì, S.; Genovese, M.; Levi, F.; Mura, A.; Pittaluga, M.; Yuan, Z.; Shields, A.; et al. Coherent phase transfer for real-world twin-field quantum key distribution. Nat. Commun. 2022, 13, 157. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Yu, Z.; Jiang, C.; Hu, X.; Wang, X. Sending-or-not-sending twin-field quantum key distribution: Breaking the direct transmission key rate. Phys. Rev. A 2020, 101, 042330. [Google Scholar] [CrossRef]
- Zhou, L.; Lin, J.; Jing, Y.; Yuan, Z. Twin-field quantum key distribution without optical frequency dissemination. Nat. Commun. 2023, 14, 928. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Lin, J.; Ge, C.; Fan, Y.; Yuan, Z.; Dong, H.; Liu, Y.; Ma, D.; Chen, J.; Jiang, C.; et al. Independent-optical-frequency-comb-powered 546-km field test of twin-field quantum key distribution. Phys. Rev. Appl. 2024, 22, 064057. [Google Scholar] [CrossRef]
- Mirko, P.; Lo, Y.; Adam, B.; Robert, I.; Davide, S.; Matthew, S.; Thomas, R.; James, F.; Kim, A.; Sergio, J.; et al. Long-distance coherent quantum communications in deployed telecom networks. Nature 2025, 640, 911–921. [Google Scholar] [CrossRef]
- Li, W.; Zhang, L.; Lu, Y.; Li, Z.; Jiang, C.; Liu, Y.; Huang, J.; Li, H.; Wang, Z.; Wang, X.; et al. Twin-field quantum key distribution without phase locking. Phys. Rev. Lett. 2023, 130, 250802. [Google Scholar] [CrossRef]
- Zeng, P.; Zhou, H.; Wu, W.; Ma, X. Mode-pairing quantum key distribution. Nat. Commun. 2022, 13, 3903. [Google Scholar] [CrossRef]
- Xie, Y.; Lu, Y.; Weng, X.; Cao, X.; Jia, Z.; Bao, Y.; Wang, Y.; Fu, Y.; Yin, H.; Chen, Z. Breaking the rate-loss bound of quantum key distribution with asynchronous two-photon interference. PRX Quantum 2022, 3, 020315. [Google Scholar] [CrossRef]
- Zhou, L.; Lin, J.; Xie, Y.; Lu, Y.; Jing, Y.; Yin, H.; Yuan, Z. Experimental quantum communication overcomes the rate-loss limit without global phase tracking. Phys. Rev. Lett. 2023, 130, 250801. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhou, F.; Zhang, C.; Jiang, C.; Chen, F.; Huang, J.; Li, H.; You, L.; Wang, X.; Liu, Y.; et al. Twin-field quantum key distribution with local frequency reference. Phys. Rev. Lett. 2024, 132, 260802. [Google Scholar] [CrossRef] [PubMed]
- Shi, K.; Li, Y.; Wang, H.; Liu, C.; Ma, D.; Zhang, Y.; Ma, F.; Ma, H. Reference-frame-independent asynchronous measurement-device-independent quantum key distribution. Adv. Quantum Technol. 2025, 8, 2400711. [Google Scholar] [CrossRef]
- Luo, D.; Liu, X.; Qin, K.; Zhang, Z.; Wei, K. Practical asynchronous measurement-device-independent quantum key distribution with advantage distillation. Phys. Rev. A 2024, 110, 022605. [Google Scholar] [CrossRef]
- Li, J.; Cui, X.; Jia, Z.; Kong, D.; Yu, H.; Zhu, X.; Liu, X.; Wang, D.; Zhang, X.; Huang, X.; et al. A strontium lattice clock with both stability and uncertainty below. Metrologia 2024, 61, 015006. [Google Scholar] [CrossRef]
- Shamsul, A.; Arda, S.; Lu, M.; Mark, J.; Larry, A. Heterodyne locking of a fully integrated optical phase-locked loop with on-chip modulators. Opt. Lett. 2017, 42, 3745–3748. [Google Scholar] [CrossRef]
- Zhu, H.; Huang, Y.; Pan, W.; Zhou, C.; Tang, J.; He, H.; Cheng, M.; Jin, X.; Zou, M.; Tang, S.; et al. Field test of mode-pairing quantum key distribution. Optica 2024, 11, 883–888. [Google Scholar] [CrossRef]
- Shao, S.; Zhou, L.; Lin, J.; Minder, M.; Ge, C.; Xie, Y.; Shen, A.; Yan, Z.; Yin, H.; Yuan, Z. High-rate measurement-device-independent quantum communication without optical reference light. Phys. Rev. X 2025, 15, 021066. [Google Scholar] [CrossRef]
- Nicholas, R.; Shiekh, Z.; Jamison, S.; Marin, S. Ultra-broadband and passive stabilization of ultrafast light sources by quantum light injection. Nanophotonics 2025, 14, 1857–1864. [Google Scholar] [CrossRef]
- Taposhree, D.; Atefe, S.; Mariia, Z.; Ignacio, L.; Jesús, S.; Anuj, K.; Bora, U.; Satyendra, K. Advances in integrated quantum photonics for quantum sensing and communication. J. Mater. Chem. C 2025, 13, 11521–11561. [Google Scholar] [CrossRef]
- Fabian, B.; Frank, B.; Helge, G.; Vadim, K.; Philipp, Z.; Gregory, G.; Wolfram, H. Fully integrated four-channel wavelength-division multiplexed QKD receiver. Optica 2022, 9, 1121–1130. [Google Scholar] [CrossRef]
- Wei, K.; Hu, X.; Du, Y.; Hua, X.; Zhao, Z.; Chen, Y.; Huang, C.; Xiao, X. Resource-efficient quantum key distribution with integrated silicon photonics. Photonics Res. 2023, 11, 1364–1372. [Google Scholar] [CrossRef]
- Matías, R.; Daniele, V.; Paolo, V.; Giuseppe, V.; Andrea, S. A time-to-digital converter with steady calibration through single-photon detection. arXiv 2024, arXiv:2406.01293. [Google Scholar]
- Javier, B.; Pedro, O.; Daniel, S.; Florina, A.; Ana, F.; Rebeca, P. QKD-KEM: Hybrid QKD integration into TLS with OpenSSL providers. arXiv 2025, arXiv:2503.07196v1. [Google Scholar]
- Zeng, P.; Debayan, B.; José, A.; Nolan, B.; Alexander, K.; Michael, S.; Ye, Z.; Filip, R.; Zhong, T.; Joseph, H.; et al. Practical hybrid PQC-QKD protocols with enhanced security and performance. arXiv 2024, arXiv:2411.01086v3. [Google Scholar] [CrossRef]
- Mattia, S.; Tommaso, B.; Paolo, V.; Giuseppe, V.; Marco, A. Hybrid encoder for discrete and continuous variable QKD. Adv. Quantum Technol. 2025, 8, 2400522. [Google Scholar] [CrossRef]
- Suhare, S. Enhancing quantum key distribution security through hybrid protocol integration. Symmetry 2025, 17, 458. [Google Scholar] [CrossRef]
- Omshankar; Venkataraman, V.; Ghosh, J. Robust hybrid-entanglement for misalignment-resilient free-space QKD. APL Quantum 2025, 2, 026106. [Google Scholar] [CrossRef]
- Ashkenazy, A.; Idan, Y.; Korn, D.; Fixler, D.; Dayan, B.; Cohen, E. Photon number splitting attack-proposal and analysis of an experimental scheme. Adv. Quantum Technol. 2024, 7, 2300437. [Google Scholar] [CrossRef]
- Kevin, A.; Cuauhtemoc, M.; Gina, G. A look at side channel attacks on post-quantum cryptography. Comput. Y Sist. 2024, 8, 1879–1896. [Google Scholar] [CrossRef]
- Nasedkin, B.; Goncharov, R.; Morozova, P.; Filipov, I.; Chistiakov, V.; Samsonov, E.; Egorov, V. Quantum hacking on the technical implementation of continuous- variable quantum key distribution systems. Radiophys. Quantum Electron. 2024, 67, 23–37. [Google Scholar] [CrossRef]
- Zapatero, V.; Navarrete, Á.; Curty, M. Implementation security in quantum key distribution. Adv. Quantum Technol. 2025, 8, 2300380. [Google Scholar] [CrossRef]
- Alomari, A.; Kumar, S. Securing IoT systems in a post-quantum environment: Vulnerabilities, attacks, and possible solutions. Internet Things 2024, 25, 101132. [Google Scholar] [CrossRef]
- Federico, G.; Álvaro, N.; Marcos, C. Asymmetric twin-field quantum key distribution. New J. Phys. 2019, 21, 113032. [Google Scholar] [CrossRef]
- Hu, X.; Jiang, C.; Yu, Z.; Wang, X. Sending-or-not-sending twin-field protocol for quantum key distribution with asymmetric source parameters. Phys. Rev. A 2019, 100, 062337. [Google Scholar] [CrossRef]
- He, S.; Wang, Y.; Li, J.; Bao, W. Asymmetric twin-field quantum key distribution with both statistical and intensity fluctuations. Commun. Theor. Phys. 2020, 72, 065103. [Google Scholar] [CrossRef]
- Deng, J.; Lu, F.; Zhong, Z.; Zhan, X.; Yin, Z.; Wang, S.; Chen, W.; He, D.; Guo, G.; Han, Z. Measurement-device-independent quantum key distribution with asymmetric sources. arXiv 2025, arXiv:2504.14614v2. [Google Scholar]
- Jin, R.; Ryosuke, S.; Fumihiro, K.; Yasuyoshi, M.; Hideo, K.; Keiichi, E. Entangled-state generation with an intrinsically pure single-photon source and a weak coherent source. Phys. Rev. A 2013, 88, 012324. [Google Scholar] [CrossRef]
- Li, Y.; Bao, W.; Li, H.; Zhou, C.; Wang, Y. Passive decoy-state quantum key distribution using weak coherent pulses with intensity fluctuations. Phys. Rev. A 2024, 89, 032329. [Google Scholar] [CrossRef]
- Magnitskiy, S.; Frolovtsev, D.; Firsov, V.; Gostev, P.; Protsenko, I.; Saygin, M. A SPDC-based source of entangled photons and its characterization. J. Russ. Laser Res. 2015, 36, 618–629. [Google Scholar] [CrossRef]
- Maximilian, T.; Erik, F.; Oleg, N.; Philipp, K.; Till, D.; Maximilian, M.; Thomas, W. Fiber-based double-pass single-crystal photon-pair source for quantum key distribution in a network. Phys. Rev. Appl. 2025, 23, 034017. [Google Scholar] [CrossRef]
- Benedikt, T.; Guido, B. Efficient high-fidelity flying qubit shaping. Phys. Rev. Res. 2024, 6, 013150. [Google Scholar] [CrossRef]
- Yang, J.; Ingrid, S.; Alejandro, V.; Akshay, G.; Claudia, C.; Anton, F.; Muhammad, A.; Carlos, S.; Axel, M.; Simone, G. Entanglement of photonic modes from a continuously driven two-level system. npj Quantum Inf. 2025, 11, 69. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Maryam, K.; Ingrid, S.; Akshay, G.; Claudia, C.; Anton, F.; Muhammad, A.; Göran, J.; Axel, M.; Simone, G. Deterministic generation of frequency-bin-encoded microwave photons. Phys. Rev. Lett. 2025, 134, 240803. [Google Scholar] [CrossRef]
- Zhang, C.; Justin, P.; Inder, M.; Erhan, S.; Wu, Q.; Hartmut, H. Mitigation of birefringence in cavity-based quantum networks using frequency-encoded photons. Phys. Rev. A 2025, 111, 062608. [Google Scholar] [CrossRef]
- Dong, X.; Cao, X.; Li, W.; Zhang, G.; Peng, Z.; Wu, R. Quantum optimal control theory for the shaping of flying qubits. Phys. Rev. Appl. 2025, 23, 044045. [Google Scholar] [CrossRef]
- Yurke, B. Input-output theory. In Quantum Squeezing; Drummond, P., Ficek, Z., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 27, pp. 53–96. [Google Scholar]
- Alexander, H.; Klaus, M. Input-output theory with quantum pulses. Phys. Rev. Lett. 2019, 123, 123604. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, H.; Li, J.; Zhang, J.; Wang, Y.; Yin, X.; Wu, Y.; Chen, W.; An, J. Polarization encoding chips based on 2-D grating and PBRS. Opt. Laser Technol. 2025, 187, 112778. [Google Scholar] [CrossRef]
- Mohr, K.; Axel, B.; Zoran, A.; Volker, H.; Max, H.; Phillip, I.; Kristian, K.; Bernhard, M.; Wilfried, N.; Simon, R.; et al. Collinear laser spectroscopy of Helium-like 11B3+. Atoms 2023, 11, 11. [Google Scholar] [CrossRef]
- Ginges, J.; Volotka, A.; Fritzsche, S. Ground-state hyperfine splitting for Rb, Cs, Fr, Ba+, and Ra+. Phys. Rev. A 2017, 96, 062502. [Google Scholar] [CrossRef]
- Zhang, W.; Leent, T.; Redeker, K.; Garthoff, R.; Schwonnek, R.; Fertig, F.; Eppelt, S.; Rosenfeld, W.; Scarani, V.; Lim, C.; et al. A device-independent quantum key distribution system for distant users. Nature 2022, 607, 687–692. [Google Scholar] [CrossRef]
- Cirigliano, L.; Brosco, V.; Castellano, C.; Conti, C.; Pilozzi, L. Optimal quantum key distribution networks: Capacitance versus security. npj Quantum Inf. 2024, 10, 44. [Google Scholar] [CrossRef]
- Cavalcanti, D.; Almeida, M.; Scarani, V.; Acín, A. Quantum networks reveal quantum nonlocality. Nat Commun. 2011, 2, 184. [Google Scholar] [CrossRef]
- Chen, T.; Jiang, X.; Tang, S.; Zhou, L.; Yuan, X.; Zhou, H.; Wang, J.; Liu, Y.; Chen, L.; Liu, W.; et al. Implementation of a 46-node quantum metropolitan area network. npj Quantum Inf. 2021, 7, 134. [Google Scholar] [CrossRef]
- Elliott, C.; Colvin, A.; Pearson, D.; Pikalo, O.; Schlafer, J.; Yeh, H. Current status of the DARPA quantum network. In Proceedings of the SPIE (the Quantum Information and Computation III, 5815, 138–150), Orlando, FL, USA, 29–30 March 2005. [Google Scholar] [CrossRef]
- Peev, M.; Pacher, C.; Alléaume, R.; Barreiro, C.; Bouda, J.; Boxleitner, W.; Debuisschert, T.; Diamanti, E.; Dianati, M.; Dynes, J.; et al. The SECOQC quantum key distribution network in Vienna. New J. Phys. 2009, 11, 075001. [Google Scholar] [CrossRef]
- Stucki, D.; Legré, M.; Buntschu, F.; Clausen, B.; Felber, N.; Gisin, N.; Henzen, L.; Junod, P.; Litzistorf, G.; Monbaron, P.; et al. Long-term performance of the SwissQuantum quantum key distribution network in a field environment. New J. Phys. 2011, 13, 123001. [Google Scholar] [CrossRef]
- Sasaki, M.; Fujiwara, M.; Ishizuka, H.; Klaus, W.; Wakui, K.; Takeoka, M.; Miki, S.; Yamashita, T.; Wang, Z.; Tanaka, A.; et al. Field test of quantum key distribution in the Tokyo QKD Network. Opt. Express 2011, 19, 10387. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhang, Q.; Chen, T.; Cai, W.; Liao, S.; Zhang, J.; Chen, K.; Yin, J.; Ren, J.; Chen, Z.; et al. An integrated space-to-ground quantum communication network over 4600 kilometres. Nature 2021, 589, 214–232. [Google Scholar] [CrossRef]
- Martin, V.; Brito, J.; Ortíz, L.; Méndez, R.; Buruaga, J.; Vicente, R.; Sebastián-Lombraña, A.; Rincón, D.; Pérez, F.; Sánchez, C.; et al. MadQCI: A heterogeneous and scalable SDN-QKD network deployed in production facilities. npj Quantum Inf. 2024, 10, 80. [Google Scholar] [CrossRef]
- Qi, F.; Smith, K.; Lecompte, T.; Tzeng, N.; Yuan, X.; Chong, F.; Peng, L. Quantum vulnerability analysis to guide robust quantum computing system design. IEEE Trans. Quantum Eng. 2023, 5, 3100411. [Google Scholar] [CrossRef]
- Wang, H.; Wang, J. An open quantum system interacting with an interference engineering environment. Entropy 2025, 27, 228. [Google Scholar] [CrossRef]
- Francesco, A.; Ludovico, L.; Vittorio, G. Maximum tolerable excess noise in continuous-variable quantum key distribution and improved lower bound on two-way capacities. Nat. Photonics 2025, 19, 329–334. [Google Scholar] [CrossRef]
- Yousuf, I.; Debojit, B. Automatic quantum communication channel with interference detection and reset mechanism. arXiv 2024, arXiv:2411.09626. [Google Scholar] [CrossRef]
- Stanley, M.; Gui, Y.; Unnikrishnan, D.; Hall, S.; Fatadin, I. Recent progress in quantum key distribution network deployments and standards. J. Phys. Conf. Ser. 2022, 2416, 012001. [Google Scholar] [CrossRef]
- van Deventer, O.; Spethmann, N.; Loeffler, M.; Amoretti, M.; van den Brink, R.; Bruno, N.; Comi, P.; Farrugia, N.; Gramegna, M.; Jenet, A.; et al. Towards European standards for quantum technologies. EPJ Quantum Technol. 2022, 9, 33. [Google Scholar] [CrossRef]
- Juan, M.; Antonio, P.; Rafael, C.; Diego, R.; Jesus, F.; Vicente, M.; Juan, P. Current status, gaps, and future directions in quantum key distribution standards: Implications for industry. In Proceedings of the International Conference on Quantum Communications, Networking, and Computing (QCNC), Kanazawa, Japan, 1–3 July 2024. [Google Scholar] [CrossRef]
- Loeffler, M.; Goroncy, C.; Länger, T.; Poppe, A.; Neumann, A.; Legré, M.; Khan, I.; Chunnilall, C.; López, D.; Lucamarini, M.; et al. Current standardisation landscape and existing gaps in the area of quantum key distribution. OPENQKD Rep. 2020, 1–31. Available online: https://openqkd.eu/wp-content/uploads/2021/03/OPENQKD_CurrentStandardisationLandscapeAndExistingGapsInTheAreaOfQuantumKeyDistribution.pdf (accessed on 1 December 2020).
- Aslan, Ö.; Aktuğ, S.; Ozkan-Okay, M.; Yilmaz, A.; Akin, E. A comprehensive review of cyber security vulnerabilities, threats, attacks, and solutions. Electronics 2023, 12, 1333. [Google Scholar] [CrossRef]
- Durr-E-Shahwar; Muhammad, I.; Ahmed, B.; Wilayat, K.; Shariq, H.; Mohammad, A. Quantum cryptography for future networks security: A systematic review. IEEE Access 2024, 12, 180048–180078. [Google Scholar] [CrossRef]
- Mao, Y.; Chen, H.; Guo, B.; Liu, S.; Li, Z.; Luo, M.; Fan, J. Certifying network topologies and nonlocalities of triangle quantum networks. Phys. Rev. Lett. 2024, 132, 240801. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Qi, X.; Hou, J. Generalized n-locality correlations in tree tensor network configuration. Eur. Phys. J. Plus 2023, 138, 772. [Google Scholar] [CrossRef]
- Jiang, J.; Liu, X.; Yang, X.; Ding, X.; Zhang, D.; Luo, M. One-Way Network Nonlocality of Continuous Variable Entangled Networks. Adv. Quantum Technol. 2025, 8, e2500147. [Google Scholar] [CrossRef]
- Souradeep, S.; Shyam, S.; Pan, A. Nonlocal correlations in an asymmetric quantum network. Phys. Rev. A 2023, 107, 022425. [Google Scholar] [CrossRef]
- Hsu, L. Nonlocal correlations in quantum networks distributed with different entangled states. New J. Phys. 2024, 26, 033026. [Google Scholar] [CrossRef]
- Sun, H.; Guo, F.; Dong, H.; Gao, F.; Qin, S. Network nonlocality sharing in the star-shaped scenario using only projective measurements. Phys. Rev. A 2025, 111, 022201. [Google Scholar] [CrossRef]
- Luo, M.; Yang, X.; Pozas-Kerstjens, A. Hierarchical certification of nonclassical network correlations. Phys. Rev. A 2024, 110, 022617. [Google Scholar] [CrossRef]
- Yang, S.; Hou, J.; He, K. Verifying hierarchical network nonlocality in general quantum networks. Chin. Phys. B 2024, 33, 070304. [Google Scholar] [CrossRef]
- Luo, M.; Fei, S. Verifying hierarchic multipartite and network nonlocalities with a unified method. Adv. Quantum Technol. 2024, 7, 2400021. [Google Scholar] [CrossRef]
- Zhou, Q.; Xu, X.; Hu, S.; Zhao, S.; Yu, S.; Li, L.; Liu, N.; Chen, K. Certifying genuine multipartite nonlocality without inequality in quantum networks. Phys. Rev. A 2023, 107, 052416. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, X.; Luo, M. Device-independently verifying full network nonlocality of quantum networks. Physica A 2023, 617, 128680. [Google Scholar] [CrossRef]
- Peter, B.; Jitendra, P. Hierarchy of multipartite nonlocality and device-independent effect witnesses. Phys. Rev. Lett. 2023, 130, 250201. [Google Scholar] [CrossRef]
- Amanda, G.; Eric, C. Multipartite nonlocality in Clifford networks. Phys. Rev. Lett. 2023, 130, 240802. [Google Scholar] [CrossRef] [PubMed]
- Pozas-Kerstjens, A.; Gisin, N.; Marc-Olivier, R. Proofs of network quantum nonlocality in continuous families of distributions. Phys. Rev. Lett. 2023, 130, 090201. [Google Scholar] [CrossRef]
- Liu, B.; Liang, Z.; Huang, W.; Gao, F.; Yuan, J.; Xu, B. Decoy-state quantum-key-distribution-based quantum private query with error tolerance bound. Phys. Rev. A 2024, 109, 052442. [Google Scholar] [CrossRef]
- Ashutosh, B.; Sainath, B.; Kamlesh, T. PUF-AQKD: A hardware-assisted quantum key distribution protocol for man-in-the-middle attack mitigation. IEEE Open J. Commun. Soc. 2025, 6, 4923–4942. [Google Scholar] [CrossRef]
- Kim, M.; Park, J. Quantum-resilient security for 6G networks: A comprehensive survey on challenges, solutions, and research opportunities. J. Supercomput. 2025, 81, 1086. [Google Scholar] [CrossRef]
- Brian, D.; Eric, C. Maximal qubit violations of n-locality in star and chain networks. Phys. Rev. A 2023, 108, 042409. [Google Scholar] [CrossRef]
- Zhang, T.; Jing, N.; Fei, S. Sharing quantum nonlocality in star network scenarios. Front. Phys. 2023, 18, 31302. [Google Scholar] [CrossRef]
- Doolittle, B.; Bromley, R.; Killoran, N.; Chitambar, E. Variational quantum optimization of nonlocality in noisy quantum networks. IEEE Trans. Quantum Eng. 2023, 4, 4100127. [Google Scholar] [CrossRef]
- Hsu, L. Genuine Bell locality and its maximal violation in quantum networks. Phys. Scr. 2024, 99, 015118. [Google Scholar] [CrossRef]
- Ananya, C.; Sahil, G.; Edwin, P.; Ram, K.; Samrat, S.; Mir, A.; Amit, M.; Manik, B. Unlocking the advantage of qubit communication in multi-node network configurations. New J. Phys. 2025, 27, 023027. [Google Scholar] [CrossRef]
- Simeon, I.; Alexandra, B.; Vladimir, M. Overcoming quantum decoherence with plasmonics. Science 2019, 364, 532–533. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Li, Y.; Hou, Y.; Wang, M.; Li, S.; Wang, H. Decoherence of single-excitation entanglement over Duan-Lukin-Cirac-Zoller quantum networks caused by slow-magnetic-field fluctuations and protection approach. Adv. Quantum Technol. 2023, 6, 2300148. [Google Scholar] [CrossRef]
- Urgelles, H.; Maheshwari, S.; Nande, S.; Bassoli, R.; Fitzek, F.; Monserrat, J. In-network quantum computing for future 6G networks. Adv. Quantum Technol. 2025, 8, 2300334. [Google Scholar] [CrossRef]
- Autebert, C.; Trapateau, J.; Orieux, A.; Lemaître, A.; Gomez-Carbonell, C.; Diamanti, E.; Zaquine, I.; Ducci, S. Multi-user quantum key distribution with entangled photons from an AlGaAs chip. Quantum Sci. Technol. 2016, 1, 01LT02. [Google Scholar] [CrossRef]
- Zhong, X.; Wang, W.; Mandil, R.; Lo, H.; Qian, L. Simple multiuser twin-field quantum key distribution network. Phys. Rev. Appl. 2022, 17, 015025. [Google Scholar] [CrossRef]
- Qi, Z.; Yang, Y.; Wu, C.; Liao, Z.; Tang, B.; Lei, J.; Li, Y.; Lin, J.; Zheng, Y.; Chen, X. Multiuser quantum communication network via time-bin-entanglement-based frequency conversion and Bell-state measurement. Phys. Rev. A 2025, 111, 052609. [Google Scholar] [CrossRef]
- Yang, L.; Qi, X.; Hou, J. Multi-nonlocality and detection of multipartite entanglements by special quantum networks. Quantum Inf. Process. 2022, 21, 305. [Google Scholar] [CrossRef]
- Xiao, M.; Zhao, M. Multi-user quantum private query using Bell states. Quantum Inf. Process. 2024, 23, 81. [Google Scholar] [CrossRef]
- Li, Y.; Huang, Y.; Xiang, T.; Nie, Y.; Sang, M.; Yuan, L.; Chen, X. Multiuser time-energy entanglement swapping based on dense wavelength division multiplexed and sum-frequency generation. Phys. Rev. Lett. 2019, 123, 250505. [Google Scholar] [CrossRef] [PubMed]
- Amit, K.; Debasis, S. Nature of nonlocality in triangle network based on elegant joint measurement. Ann. Phys. 2024, 536, 2300297. [Google Scholar] [CrossRef]
- Dong, K.; Zhao, Y.; Yang, T.; Li, Y.; Nag, A.; Yu, X.; Zhang, J. Tree-topology-based quantum-key-relay strategy for secure multicast services. J. Opt. Commun. Netw. 2020, 12, 120–132. [Google Scholar] [CrossRef]
- Davide, P.; Iris, A.; Guglielmo, M.; Emanuele, P.; Taira, G.; Alessia, S.; Mauro, V.; Giorgio, M.; Nicolò, S.; Gonzalo, C.; et al. Experimental violation of n-locality in a star quantum network. Nat. Commun. 2020, 11, 2467. [Google Scholar] [CrossRef]
- Sneha, M.; Rahul, K.; Pan, A. Generalized n-locality inequalities in a star-network configuration and their optimal quantum violations. Phys. Rev. A 2021, 104, 042217. [Google Scholar] [CrossRef]
- Rahul, K.; Pan, A. Generalized n-Locality inequalities in linear-chain network for arbitrary inputs scenario and their quantum violations. Ann. Phys. 2022, 534, 2200182. [Google Scholar] [CrossRef]
- Scheiderer, C. Sums of squares on real algebraic surfaces. Manuscripta Math. 2006, 119, 395–410. [Google Scholar] [CrossRef]
- Victor, B.; Pavel, S.; Jean-Daniel, B. Custom Bell inequalities from formal sums of squares. Quantum 2024, 8, 1333. [Google Scholar] [CrossRef]
- Luo, M. Fully Device-Independent Model on Quantum Networks. Phys. Rev. Res. 2022, 4, 013203. [Google Scholar] [CrossRef]
- Marc-Olivier, R.; Elisa, B.; Sadra, B.; Nicolas, B.; Nicolas, G.; Salman, B. Genuine Quantum Nonlocality in the Triangle Network. Phys. Rev. Lett. 2019, 123, 140401. [Google Scholar] [CrossRef]
- Tavakoli, A. Bell-type inequalities for arbitrary noncyclic networks. Phys. Rev. A 2016, 93, 030101. [Google Scholar] [CrossRef]
- Luo, M. Computationally efficient nonlinear bell inequalities for quantum networks. Phys. Rev. Lett. 2018, 120, 140402. [Google Scholar] [CrossRef]
- Yang, L.; Qi, X.; Hou, J. Nonlocal correlations in the tree-tensor-network configuration. Phys. Rev. A 2021, 104, 042405. [Google Scholar] [CrossRef]
- Yang, L.; Qi, X.; Hou, J. Quantum nonlocality in any forked tree-shaped network. Entropy 2022, 24, 691. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, Y.; Wang, L.; Chen, Q. Network nonlocality sharing via weak measurements in the generalized star network configuration. Phys. Rev. A 2022, 106, 052412. [Google Scholar] [CrossRef]
- Li, Z.; He, Y.; Ding, D.; Yu, M.; Gao, T.; Yan, F. (n, m, p)-type quantum network configuration and its nonlocality. Quantum Inf. Process. 2024, 23, 338. [Google Scholar] [CrossRef]
- Te’Eni, A.; Peled, B.; Cohen, E.; Carmi, A. Multiplicative bell inequalities. Phys. Rev. A 2019, 99, 040102. [Google Scholar] [CrossRef]
- Paneru, D. Experimental tests of multiplicative bell inequalities and the fundamental role of local correlations. Phys. Rev. Res. 2021, 3, l012025. [Google Scholar] [CrossRef]
- Prabhav, J.; Mariami, G.; Nikolai, M. Information causality as a tool for bounding the set of quantum correlations. Phys. Rev. Lett. 2024, 133, 160201. [Google Scholar] [CrossRef]
- Bose, S.; Vedral, V.; Knight, P. Multiparticle generalization of entanglement swapping. Phys. Rev. A 1998, 57, 822–829. [Google Scholar] [CrossRef]
- Liu, S.; Lou, Y.; Chen, Y.; Jing, J. All-optical entanglement swapping. Phys. Rev. Lett. 2022, 128, 060503. [Google Scholar] [CrossRef]
- Mastriani, M. Simplified entanglement swapping protocol for the quantum Internet. Sci. Rep. 2023, 13, 21998. [Google Scholar] [CrossRef]
- Sajede, H.; Wang, Y.; Cong, S. Perfect entanglement swapping of W states. Commun. Theor. Phys. 2025, 77, 105102. [Google Scholar] [CrossRef]
- Santeri, H.; Yousef, M.; Ali, G.; Teemu, O. General many-body entanglement swapping protocol. arXiv 2025, arXiv:2506.22430. [Google Scholar] [CrossRef]
- Yang, B.; Li, Z.; Xue, K.; Chen, L.; Sun, Q.; Lu, J. SwappingBoost: Optimizing entanglement routing by mitigating bottlenecks in quantum networks. In Proceedings of the International Wireless Communications and Mobile Computing (IWCMC), Abu Dhabi, United Arab Emirates, 12–16 May 2025. [Google Scholar] [CrossRef]
- Kun, C.; Kristian, S.; Petar, P. Sequential entanglement-swapping assisted by quantum protocol over Ethernet networks. In Proceedings of the International Conference on Quantum Communications, Networking, and Computing (QCNC), Nara, Japan, 31 March–2 April 2025. [Google Scholar] [CrossRef]
- He, B.; Loke, S.; Lu, L.; Zhang, D. Efficient entanglement swapping in quantum networks for multi-user scenarios. Entropy 2025, 27, 615. [Google Scholar] [CrossRef] [PubMed]
- Samantha, I.; Raju, V.; Andrew, C.; Cristian, P.; Xie, S.; Lautaro, N.; Nikolai, L.; Li, C.; Kelsie, T.; Rahaf, Y.; et al. Entanglement swapping systems toward a quantum internet. arXiv 2025, arXiv:2503.18906v1. [Google Scholar] [CrossRef]
- Paul, K.; Jens, E.; Mária, K.; Richard, K. Short-time simulation of quantum dynamics by Pauli measurements. Phys. Rev. A 2025, 112, 012602. [Google Scholar] [CrossRef]
- Timothy, N.; Bjorn, K.; Christoph, S.; Aleksei, V. Pauli decomposition via the fast Walsh-Hadamard transform. New J. Phys. 2025, 27, 033004. [Google Scholar] [CrossRef]
- Rahul, K.; Pan, A. Sharing nonlocality in a network using the quantum violation of chain network inequality. Quantum Stud. Math. Found. 2023, 10, 353–372. [Google Scholar] [CrossRef]
- Sun, H.; Guo, F.; Dong, H.; Gao, F. Network nonlocality sharing in a two-forked tree-shaped network. Phys. Rev. A 2024, 110, 012401. [Google Scholar] [CrossRef]
- Saha, S.; Das, D.; Sasmal, S.; Sarkar, D.; Mukherjee, K.; Roy, A.; Bhattacharya, S. Sharing of tripartite nonlocality by multiple observers measuring sequentially at one side. Quantum Inf. Process. 2019, 18, 42. [Google Scholar] [CrossRef]
- Xi, Y.; Li, M.; Fu, L.; Zheng, Z. Sharing tripartite nonlocality sequentially by arbitrarily many independent observers. Phys. Rev. A 2023, 107, 062419. [Google Scholar] [CrossRef]
- Anna, S.; Armin, T. Projective measurements are sufficient for recycling nonlocality. Phys. Rev. Lett. 2022, 129, 230402. [Google Scholar] [CrossRef]
- Zhang, T.; Yang, H.; Fei, S. Sharing Bell nonlocality of bipartite high-dimensional pure states using only projective measurements. Phys. Rev. A 2024, 109, 022419. [Google Scholar] [CrossRef]
- Ron, R.; Offek, T.; Alexey, G.; Klaus, M.; Ido, K. Many-body entanglement via ‘which-path’ information. npj Quantum Inf. 2024, 10, 121. [Google Scholar] [CrossRef]
- Cornish, S.; Tarbutt, M.; Hazzard, K. Quantum computation and quantum simulation with ultracold molecules. Nat. Phys. 2024, 20, 730–740. [Google Scholar] [CrossRef]
- Mi, X.; Michailidis, A.; Shabani, S.; Miao, K.; Klimov, P.; Lloyd, J.; Rosenberg, E.; Acharya, R.; Aleiner, I.; Andersen, T.; et al. Stable quantum-correlated many-body states through engineered dissipation. Science 2024, 383, 1332–1337. [Google Scholar] [CrossRef]
- Xu, S.; Brian, S. Scrambling dynamics and out-of-time-ordered correlators in quantum many-body systems. PRX Quantum 2024, 5, 010201. [Google Scholar] [CrossRef]
- Appel, M.; Ghorbal, A.; Shofer, N.; Leon, Z.; Santanu, M.; Saimon, F.; Urs, H.; Claire, L.; Armando, R.; Dorian, A.; et al. A many-body quantum register for a spin qubit. Nat. Phys. 2025, 21, 368–373. [Google Scholar] [CrossRef]
- Reza, H. Entanglement measures for many-body quantum systems: Limitations and new approaches. arXiv 2024, arXiv:2408.10272. [Google Scholar]
- Brandt, H. Positive-operator and projection valued measurements in quantum key distribution. J. Mod. Optic. 2007, 54, 2357–2363. [Google Scholar] [CrossRef]
- Isabella, C.; Petra, F. Optimal individual and collective measurements for nonorthogonal quantum key distribution signals. Phys. Rev. A 2024, 109, 032615. [Google Scholar] [CrossRef]
- Metger, T.; Renner, R. Security of quantum key distribution from generalised entropy accumulation. Nat. Commun. 2023, 14, 5272. [Google Scholar] [CrossRef]
- Rebecca, R.; Nelly, H.; Cai, Y. Generalized numerical framework for improved finite-sized key rates with Rényi entropy. Phys. Rev. A 2025, 112, 012612. [Google Scholar] [CrossRef]
- Yang, C.; Hwang, T. Fault tolerant quantum key distributions using entanglement swapping of GHZ states over collective-noise channels. Quantum Inf. Process. 2013, 12, 3207–3222. [Google Scholar] [CrossRef]
- Paula, B.; Matthias, C.; Alexander, M. Fault-Tolerant Coding for Entanglement-Assisted Communication. IEEE Trans. Inf. Theory 2024, 70, 2655–2673. [Google Scholar] [CrossRef]
- Li, C. Fault-tolerant measurement-device-independent quantum key distribution in a decoherence-free subspace. Quantum Inf. Process. 2018, 17, 287. [Google Scholar] [CrossRef]
- Kocsis, S.; Hall, M.; Bennet, A.; Dylan, J.; Geoff, J. Experimental measurement-device-independent verification of quantum steering. Nat. Commun. 2015, 6, 5886. [Google Scholar] [CrossRef]
- Nery, R.; Taddei, M.; Sahium, P.; Walborn, S.; Aolita, L.; Aguilar, G. Distillation of quantum steering. Phys. Rev. Lett. 2020, 124, 120402. [Google Scholar] [CrossRef]
- Roope, U. Quantum steering. Rev. Mod. Phys. 2020, 92, 015001. [Google Scholar] [CrossRef]
- Martin, P.; Otfried, G. Contextuality as a precondition for quantum entanglement. Phys. Rev. Lett. 2024, 132, 100201. [Google Scholar] [CrossRef]
- Mladen, P. Quantum contextuality. Quantum 2023, 7, 953. [Google Scholar] [CrossRef]
- Jaskaran, S.; Rajendra, S.; Arvind. Revealing quantum contextuality using a single measurement device. Phys. Rev. A 2023, 107, 012201. [Google Scholar] [CrossRef]
- Jean-Daniel, B.; Jonathan, B.; Nicolas, G.; Stefano, P. Definitions of multipartite nonlocality. Phys. Rev. A 2013, 88, 014102. [Google Scholar] [CrossRef]
- Ashok, A.; Pranaw, R. Svetlichny’s inequality and genuine tripartite nonlocality in three-qubit pure states. Phys. Rev. A 2010, 81, 052334. [Google Scholar] [CrossRef]
- Paweł, C.; Andrzej, M.; Kamila, T. Activation of the violation of the Svetlichny inequality. Phys. Rev. A 2015, 92, 032119. [Google Scholar] [CrossRef]
- Hossain, S.; Paul, B.; Chattopadhyay, I.; Sarkar, D. Tight upper bound of genuine four party Svetlichny type nonlocality. Int. J. Theor. Phys. 2025, 64, 59. [Google Scholar] [CrossRef]
- Xiang, Y. Multipartite quantum cryptography based on the violation of Svetlichny’s inequality. Eur. Phys. J. D 2023, 77, 31. [Google Scholar] [CrossRef]
- Mao, Y.; Li, Z.; Anna, S.; Guo, B.; Liu, B.; Xu, S.; Nicolas, G.; Armin, T.; Fan, J. Recycling nonlocality in quantum star networks. Phys. Rev. Res. 2023, 5, 013104. [Google Scholar] [CrossRef]
- Mukherjee, K. Detecting nontrilocal correlations in a triangle network. Phys. Rev. A 2022, 106, 042206. [Google Scholar] [CrossRef]
- Sadra, B.; Antoine, G.; Bora, U.; Patryk, L.; Nicolas, B.; Pavel, S. Towards a minimal example of quantum nonlocality without inputs. Phys. Rev. A 2023, 107, 062413. [Google Scholar] [CrossRef]
- Meskine, O.; Šupić, I.; Markham, D.; Appas, F.; Boitier, F.; Morassi, M.; Lemaître, A.; Amanti, M.; Baboux, F.; Diamanti, E.; et al. Experimental fiber-based quantum triangle-network nonlocality with a telecom AlGaAs multiplexed entangled-photon source. PRX Quantum 2025, 6, 020313. [Google Scholar] [CrossRef]
- Silva, J.; Pozas-Kerstjens, A.; Parisio, F. Local models and Bell inequalities for the minimal triangle network. arXiv 2025, arXiv:2503.16654v1. [Google Scholar] [CrossRef]
- Krivachy, T.; Kerschbaumer, M. Closing the detection loophole in the triangle network with high-dimensional photonic states. arXiv 2025, arXiv:2503.24213v1. [Google Scholar] [CrossRef]
- Elisa, B.; Victor, G.; Tamás, K.; Nicolas, G.; Renato, R. Exploring the local landscape in the triangle network. Phys. Rev. A 2025, 111, 052453. [Google Scholar] [CrossRef]
- He, K.; Han, Y. Star network non-n-local correlations can resist consistency noises better. arXiv 2023, arXiv:2307.09293v2. [Google Scholar]
- Kaushiki, M.; Biswajit, P. Revealing Hidden Non n-Locality In n-Local Star Network. arXiv 2025, arXiv:2506.19026v1. [Google Scholar]
- Yang, Y.; Cao, H.; Cuo, Z.; Fan, Y. Generalized strong locality inequality for multi-star-shaped quantum networks. Phys. Scr. 2024, 99, 105244. [Google Scholar] [CrossRef]
- Zhang, Y.; Hou, J.; He, K. Detecting nonlocal correlations in chain-shaped quantum networks via a deep-learning method. Phys. Rev. A 2024, 110, 062609. [Google Scholar] [CrossRef]
- Munshi, S.; Pan, A. Characterizing nonlocal correlations through various n-locality inequalities in a quantum network. Phys. Rev. A 2022, 105, 032216. [Google Scholar] [CrossRef]
- Yang, S.; Hou, J.; He, K. Persistency of quantum non-multi-local correlations in noisy acyclic networks. Phys. Scr. 2024, 99, 055106. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, M.; Jing, N.; Wang, Z. Separability criteria based on Bloch representation of density matrices. Quantum Inf. Process. 2020, 19, 14. [Google Scholar] [CrossRef]
- Omar, G. Entangled Bloch spheres: Bloch matrix and two-qubit state space. Phys. Rev. A 2016, 93, 062320. [Google Scholar] [CrossRef]
- Nicolas, G. Entanglement 25 Years after Quantum Teleportation: Testing Joint Measurements in Quantum Networks. Entropy 2019, 21, 325. [Google Scholar] [CrossRef] [PubMed]
- Ding, D.; Yu, M.; He, Y.; Ji, H.; Gao, T.; Yan, F. Quantum teleportation based on the elegant joint measurement. Phys. Lett. A 2024, 527, 129991. [Google Scholar] [CrossRef]
- Charles, H.; Herbert, J.; Sandu, P.; Benjamin, S. Concentrating partial entanglement by local operations. Phys. Rev. A 1996, 53, 2046. [Google Scholar] [CrossRef]
- Madsen, L.; Usenko, V.; Lassen, M.; Filip, R.; Andersen, U. Continuous variable quantum key distribution with modulated entangled states. Nat. Commun. 2012, 3, 1083. [Google Scholar] [CrossRef]
- Toscano, F.; Tasca, D.; Rudnicki, Ł.; Walborn, S. Uncertainty Relations for Coarse-Grained Measurements: An Overview. Entropy 2018, 20, 454. [Google Scholar] [CrossRef]
- Ian, G.; Lin, J.; Norbert, L. Numerical calculations of the finite key rate for general quantum key distribution protocols. Phys. Rev. Res. 2021, 3, 013274. [Google Scholar] [CrossRef]
- Devashish, T.; Norbert, L. Using cascade in quantum key distribution. Phys. Rev. Appl. 2023, 20, 064040. [Google Scholar] [CrossRef]
- Pascual-García, C.; Bäuml, S.; Araújo, M.; Liss, R.; Acín, A. Improved finite-size key rates for discrete-modulated continuous-variable quantum key distribution under coherent attacks. Phys. Rev. A 2025, 111, 022610. [Google Scholar] [CrossRef]
- Andris, A.; Julia, K.; Or, S. A quantum Lovász local lemma. J. Appl. Comput. Mech. 2012, 59, 24. [Google Scholar] [CrossRef]
- Bravyi, S.; Gosset, D.; Movassagh, R. Classical algorithms for quantum mean values. Nat. Phys. 2021, 17, 337–341. [Google Scholar] [CrossRef]
- Takayama, N. Gröbner basis and the problem of contiguous relations. Japan J. Appl. Math. 1989, 6, 147–160. [Google Scholar] [CrossRef]
- Takuma, I.; Naoyuki, S.; Shigenori, U. Solving the MQ problem using Gröbner basis techniques. IEICE T. Fund. 2021, E104-A, 135–142. [Google Scholar] [CrossRef]
- Rosset, D.; Gisin, N.; Wolfe, E. Universal bound on the cardinality of local hidden variables in net-works. Quantum Inf. Comput. 2018, 18, 0910–0926. [Google Scholar] [CrossRef]
- Ivan, Š.; Jean-Daniel, B.; Nicolas, B. Quantum nonlocality in networks can be demonstrated with an arbitrarily small level of independence between the sources. Phys. Rev. Lett. 2020, 125, 240403. [Google Scholar] [CrossRef]
- Han, C.; Akio, Y.; Hidemi, T.; Kazuro, K. Broadband source of telecom-band polarization-entangled photon-pairs for wavelength-multiplexed entanglement distribution. Opt. Express 2008, 16, 16052–16057. [Google Scholar] [CrossRef]
- Kang, D.; Ankita, A.; Amr, S. Monolithic semiconductor chips as a source for broadband wavelength-multiplexed polarization entangled photons. Opt. Express 2016, 24, 15160–15170. [Google Scholar] [CrossRef]
- Alexander, M.; Lucas, M.; Karthik, V.; Muneer, A.; Saleha, F.; Lv, H.; Andrew, M.; Joseph, M. CMOS photonic integrated source of broadband polarization-entangled photons. Optica Quantum 2024, 2, 254–259. [Google Scholar] [CrossRef]
- Liang, S.; Cheng, J.; Qin, J.; Li, J.; Shi, Y.; Zeng, B.; Yan, Z.; Jia, X.; Xie, C.; Peng, K. Frequency-Division Multiplexing Continuous Variable Quantum Dense Coding with Broadband Entanglement. Laser Photonics Rev. 2024, 18, 2400094. [Google Scholar] [CrossRef]
- Jiang, Z.; Yan, W.; Lu, C.; Chen, Y.; Wen, W.; An, Y.; Chen, L.; Lu, Y.; Zhu, S.; Ma, X. Entanglement distribution over metropolitan fiber using on-chip broadband polarization entangled photon source. arXiv 2025, arXiv:2503.07198. [Google Scholar] [CrossRef]
- Marc-Olivier, R.; Salman, B. Network nonlocality via rigidity of token counting and color matching. Phys. Rev. A 2022, 105, 022408. [Google Scholar] [CrossRef]
- Pavel, S.; Sadra, B.i.; Nicolas, B. Partial Self-Testing and Randomness Certification in the Triangle Network. Phys. Rev. Lett. 2023, 131, 100201. [Google Scholar] [CrossRef] [PubMed]
- Michael, F. A Bell inequality for a class of multilocal ring networks. Quantum Inf. Process. 2017, 16, 266. [Google Scholar] [CrossRef]
- Xiao, S.; Guo, Z.; Cao, H.; Han, K.; Yang, Y. Nonlocality of star-shaped correlation tensors based on the architecture of a general multi-star-network. Mathematics 2023, 11, 1625. [Google Scholar] [CrossRef]
- Yang, Y.; Xiao, S.; Cao, H. Nonlocality of a type of multi-star-shaped quantum networks. J. Phys. A Math. Theor. 2022, 55, 025303. [Google Scholar] [CrossRef]
- Tohya, H.; Satoshi, I. Local and nonlocal properties of Werner states. Phys. Rev. A 2000, 62, 044302. [Google Scholar] [CrossRef]
- Zhang, C.; Zheng, Z.; Fei, S.; Feng, M. Dynamics of quantum networks in noisy environments. Entropy 2023, 25, 157. [Google Scholar] [CrossRef] [PubMed]
- Maria, F.; Wolfgang, D. Influence of Noise in Entanglement-Based Quantum Networks. J. Sel. Areas Commun. 2024, 42, 1793–1807. [Google Scholar] [CrossRef]
- Coutinho, B.; Munro, W.; Nemot, K. Robustness of noisy quantum networks. Commun. Phys. 2022, 5, 105. [Google Scholar] [CrossRef]
- Jia, X.; Zhai, C.; Zhu, X.; You, C.; Cao, Y.; Zhang, X.; Zheng, Y.; Fu, Z.; Mao, J.; Dai, T.; et al. Continuous-variable multipartite entanglement in an integrated micro comb. Nature 2025, 639, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Boreiri, S.; Kriváchy, T.; Sekatski, P.; Girardin, A.; Brunner, N. Topologically robust quantum network nonlocality. Phys. Rev. Lett. 2025, 134, 010202. [Google Scholar] [CrossRef]
- Kriváchy, T.; Cai, Y.; Cavalcanti, D.; Tavakoli, A.; Gisin, N.; Brunner, N. A neural network oracle for quantum nonlocality problems in networks. npj Quantum Inf. 2020, 6, 70. [Google Scholar] [CrossRef]
- Yang, S.; Hou, J.; He, K. Witnessing the distribution of sources in quantum networks via hierarchical nonlocality. Chin. Phys. B 2025, 34, 060303. [Google Scholar] [CrossRef]
- Yang, S.; He, K.; Hou, J.; Ma, Z.; Fei, S.; Luo, M. Witnessing network topologies using quantum nonlocality. Phys. Rev. A 2024, 110, 032437. [Google Scholar] [CrossRef]
- Chen, Y.; Yong, X.; Zheng, Z. The maximal violation of the Svetlichny inequality for “X” states and the extended GHZ states. Int. J. Quantum Inf. 2024, 22, 2450031. [Google Scholar] [CrossRef]
- Hu, D.; Li, M.; Guo, F.; Wang, Y.; Dong, H.; Gao, F. Tight upper bound of the maximal quantum violation of Gisin’s elegant Bell inequality and its application in randomness certification. EPJ Quantum Technol. 2025, 12, 19. [Google Scholar] [CrossRef]
- Abrol, P.; Singh, P.; Chakrabarty, I. Maximal secret reconstruction, teleportation and Bell’s inequality. Eur. Phys. J. D 2025, 79, 11. [Google Scholar] [CrossRef]
- Cildiroglu, H. Testing Bell-CHSH inequalities using topological Aharonov-Casher and He-McKellar-Wilkens phases. Ann. Phys. 2024, 465, 169684. [Google Scholar] [CrossRef]
- Paganini, G.; Cuevas, Á.; Camphausen, R.; Demuth, A.; Pruneri, V. High-quality entangled photon source by symmetric beam displacement design. APL Photonics 2025, 10, 031302. [Google Scholar] [CrossRef]
- Giacomo, P.; Álvaro, C.; Robin, C.; Alexander, D.; Valerio, P. Polarization entangled photon-pair source in a dual displacement interferometric configuration. In Proceedings of the SPIE Photonics Europe, 129930I, Strasbourg, France, 10 June 2024. [Google Scholar] [CrossRef]
- Renou, M.; Trillo, D.; Weilenmann, M.; Le, T.; Tavakoli, A.; Gisin, N.; Acín, A.; Navascués, M. Quantum theory based on real numbers can be experimentally falsified. Nature 2021, 600, 625–629. [Google Scholar] [CrossRef]
- Guehne, O.; Toth, G.; Hyllus, P.; Briegel, H. Bell Inequalities for Graph States. Phys. Rev. Lett. 2005, 95, 120405. [Google Scholar] [CrossRef] [PubMed]
- Branciard, C.; Rosset, D.; Gisin, N.; Pironio, S. Bilocal versus nonbilocal correlations in entanglement-swapping experiments. Phys. Rev. A 2011, 85, 032119. [Google Scholar] [CrossRef]
- Emil, H.; Amélie, P.; Sadiq, M.; Mohamed, B. Experimental demonstration of full network nonlocality in the bilocal scenario. arXiv 2022, arXiv:2201.06361v2. [Google Scholar] [CrossRef]
- Cai, Z.; Ren, C. Full network nonlocality sharing in extended bilocal scenario via weak measurements with the optimal pointer. J. Phys. A Math. Theor. 2024, 57, 195305. [Google Scholar] [CrossRef]
- Wolfe, E.; Spekkens, R.; Fritz, T. The Inflation Technique for Causal Inference with Latent Variables. J. Causal Inference 2019, 7, 20170020. [Google Scholar] [CrossRef]
- Henson, J.; Lal, R.; Pusey, M. Theory-independent limits on correlations from generalized Bayesian networks. New J. Phys. 2014, 16, 113043. [Google Scholar] [CrossRef]
- Fritz, T. Beyond Bell’s theorem II: Scenarios with arbitrary causal structure. Commun. Math. Phys. 2016, 341, 391–434. [Google Scholar] [CrossRef]
- Gu, X.; Huang, L.; Pozas-Kerstjens, A.; Jiang, Y.; Wu, D.; Bai, B.; Sun, Q.; Chen, M.; Zhang, J.; Yu, S.; et al. Experimental Full Network Nonlocality with Independent Sources and Strict Locality Constraints. Phys. Rev. Lett. 2023, 130, 190201. [Google Scholar] [CrossRef]
- Wang, N.; Pozas-Kerstjens, A.; Zhang, C.; Liu, B.; Huang, Y.; Li, C.; Guo, G.; Gisin, N.; Tavakoli, A. Certification of non-classicality in all links of a photonic star network without assuming quantum mechanics. Nat. Commun. 2023, 14, 2153. [Google Scholar] [CrossRef]
- Edward, B.; Alexander, I.; Qi, W.; Wu, J. Remarks on controlled measurement and quantum algorithm for calculating Hermitian conjugate. arXiv 2025, arXiv:2501.16028. [Google Scholar]
- Paul, G. Hyper-entangled states. J. Mod. Optic. 1997, 44, 2173–2184. [Google Scholar] [CrossRef]
- Zhao, P.; Ying, J.; Yang, M.; Zhong, W.; Du, M.; Shen, S.; Li, Y.; Zhang, A.; Zhou, L.; Sheng, Y. Direct generation of multiphoton hyperentanglement. Phys. Rev. Appl. 2025, 23, 014003. [Google Scholar] [CrossRef]
- Huang, C.; Hu, X.; Guo, Y.; Zhang, C.; Liu, B.; Huang, Y.; Li, C.; Guo, G.; Gisin, N.; Branciard, C.; et al. Entanglement swapping and quantum correlations via symmetric joint measurements. Phys. Rev. Lett. 2022, 129, 030502. [Google Scholar] [CrossRef]
- Stoica, O. Born Rule: Quantum Probability as Classical Probability. Int. J. Theor. Phys. 2025, 64, 117. [Google Scholar] [CrossRef]
- Arnold, N. The Born Rule—100 Years Ago and Today. Entropy 2025, 27, 415. [Google Scholar] [CrossRef] [PubMed]
- Randy, K. Generalized uncertainty principles for quantum cryptography. arXiv 2023, arXiv:2302.01026. [Google Scholar] [CrossRef]
- Veltheim, O.; Keski-Vakkuri, E. Optimizing quantum measurements by partitioning multisets of observables. Phys. Rev. Lett. 2025, 134, 030801. [Google Scholar] [CrossRef] [PubMed]
- Sorella, S. Bell’s and Mermin’s inequalities, entangled coherent states and unitary operators. Int. J. Theor. Phys. 2024, 63, 227. [Google Scholar] [CrossRef]
- Sorella, S. A study of the violation of the Bell-CHSH inequality through a pairing mechanism. Int. J. Theor. Phys. 2024, 63, 43. [Google Scholar] [CrossRef]
- Li, R.; Li, D.; Wu, S.; Qin, S.; Gao, F.; Wen, Q. Tripartite Svetlichny test with measurement dependence. Front. Phys. 2024, 12, 1356682. [Google Scholar] [CrossRef]
- Amit, K.; Debasis, S. Influence of joint measurement bases on sharing network nonlocality. Quantum Inf. Process. 2025, 24, 103. [Google Scholar] [CrossRef]
- Amit, K.; Debasis, S. Measurement dependence can affect security in a quantum network. Ann. Phys. 2024, 536, 2400123. [Google Scholar] [CrossRef]
- Munshi, S.; Pan, A. Device-Independent Full Network Nonlocality for Arbitrary-Party and Unbounded-Input Scenario. Phys. Rev. Lett. 2025, 134, 210203. [Google Scholar] [CrossRef]
- Chen, R.; Mančinska, L.; Volčič, J. All real projective measurements can be self-tested. Nat. Phys. 2024, 20, 1642–1647. [Google Scholar] [CrossRef]
- Volčič, J. Constant-sized self-tests for maximally entangled states and single projective measurements. Quantum 2024, 8, 1292. [Google Scholar] [CrossRef]
- Lien, C.; Chen, S. Investigating an approach of robustly self-testing two-qubit entangled states. Phys. Rev. A 2025, 111, 012439. [Google Scholar] [CrossRef]
- Šupić, I.; Bancal, J.; Cai, Y.; Brunner, N. Genuine network quantum nonlocality and self-testing. Phys. Rev. A 2022, 105, 022206. [Google Scholar] [CrossRef]
- Sunilkumar, A.; Shaji, A.; Saha, D. Is genuine nonlocality in the triangle network exclusive to pure states? arXiv 2025, arXiv:2501.08079v1. [Google Scholar] [CrossRef]
- Mao, Y.; Li, Z.; Yu, S.; Fan, J. Test of Genuine Multipartite Nonlocality. Phys. Rev. Lett. 2022, 129, 150401. [Google Scholar] [CrossRef] [PubMed]
- Šupić, I.; Bowles, J. Self-testing of quantum systems: A review. Quantum 2020, 4, 337. [Google Scholar] [CrossRef]
- Contreras-Tejada, P.; Palazuelos, C.; de Vicente, J.I. Genuine Multipartite Nonlocality Is Intrinsic to Quantum Networks. Phys. Rev. Lett. 2021, 126, 040501. [Google Scholar] [CrossRef] [PubMed]
- Mayers, D.; Yao, A. Self testing quantum apparatus. Quantum Inf. Comput. 2004, 4, 273–286. [Google Scholar] [CrossRef]
- Šupić, I.; Brunner, N. Self-testing nonlocality without entanglement. Phys. Rev. A 2023, 107, 062220. [Google Scholar] [CrossRef]
- Chia, N.; Chung, K.; Liang, X.; Liu, J. The Black-Box Simulation Barrier Persists in a Fully Quantum World. arXiv 2024, arXiv:2409.06317. [Google Scholar] [CrossRef]
- Yang, T.; Vértesi, T.; Bancal, J.; Scarani, V.; Navascués, M. Robust and versatile black-box certification of quantum devices. Phys. Rev. Lett. 2014, 113, 040401. [Google Scholar] [CrossRef] [PubMed]
- Nadlinger, D.; Drmota, P.; Nichol, B.; Araneda, G.; Main, D.; Srinivas, R.; Lucas, D.; Ballance, C.; Ivanov, K.; Tan, E.; et al. Experimental quantum key distribution certified by Bell’s theorem. Nature 2022, 607, 682–686. [Google Scholar] [CrossRef]
- Mayers, D.; Yao, A. Quantum cryptography with imperfect apparatus. In Proceedings of the 39th Annual Symposium on Foundations of Computer Science, Palo Alto, CA, USA, 8–11 November 1998. [Google Scholar] [CrossRef]
- Lim, C.; Portmann, C.; Tomamichel, M.; Renner, R.; Gisin, N. Device-independent quantum key distribution with local Bell test. Phys. Rev. X 2013, 3, 031006. [Google Scholar] [CrossRef]
- Arnon-Friedman, R.; Dupuis, F.; Fawzi, O.; Renner, R.; Vidick, T. Practical device-independent quantum cryptography via entropy accumulation. Nat. Commun. 2018, 9, 459. [Google Scholar] [CrossRef]
- Zeng, H.; Du, M.; Zhong, W.; Zhou, L.; Sheng, Y. High-capacity device-independent quantum secure direct communication based on hyper-encoding. Fundam. Res. 2024, 4, 851–857. [Google Scholar] [CrossRef]
- Cameron, F.; Lluis, M. Seedless extractors for device-independent quantum cryptography. Quantum 2025, 9, 1654. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, Y.; Zhen, Y.; Li, M.; Liu, Y.; Fan, J.; Xu, F.; Zhang, Q.; Pan, J. Toward a Photonic Demonstration of Device-Independent Quantum Key Distribution. Phys. Rev. Lett. 2022, 129, 050502. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Das, D.; Jebarathinam, C.; Roy, A.; Datta, S.; Majumdar, A. “All-versus-nothing” proof of genuine tripartite steering and entanglement certification in the two-sided device-independent scenario. Quantum Stud. Math. Found. 2022, 9, 175–198. [Google Scholar] [CrossRef]
- Huang, L.; Gu, X.; Jiang, Y.; Wu, D.; Bai, B.; Chen, M.; Sun, Q.; Zhang, J.; Yu, X.; Zhang, Q.; et al. Experimental Demonstration of Genuine Tripartite Nonlocality under Strict Locality Conditions. Phys. Rev. Lett. 2022, 129, 060401. [Google Scholar] [CrossRef]
- Adhikary, R.; Mishra, A.; Rahaman, R. Self-testing of genuine multipartite entangled states without network assistance. Phys. Rev. A 2024, 110, L010401. [Google Scholar] [CrossRef]
- Murta, G.; Baccari, F. Self-Testing with Dishonest Parties and Device-Independent Entanglement Certification in Quantum Communication Networks. Phys. Rev. Lett. 2023, 131, 140201. [Google Scholar] [CrossRef]
- Contreras-Tejada, P.; Palazuelos, C.; Vicente, J. Asymptotic Survival of Genuine Multipartite Entanglement in Noisy Quantum Networks Depends on the Topology. Phys. Rev. Lett. 2022, 128, 220501. [Google Scholar] [CrossRef]
- Chang, W.; Chen, K.; Chen, K.; Chen, S.; Liang, Y. Device-independent certification of desirable properties with a confidence interval. Front. Phys. 2024, 12, 1434095. [Google Scholar] [CrossRef]
- Gangopadhyay, S.; Wang, T.; Mashatan, A.; Ghose, S. Controlled quantum teleportation in the presence of an adversary. Phys. Rev. A 2022, 106, 052433. [Google Scholar] [CrossRef]
- Boghiu, E.; Hirsch, F.; Lin, P.; Quintino, M.; Bowles, J. Device-independent and semi-device-independent entanglement. SciPost Phys. Core 2023, 6, 028. [Google Scholar] [CrossRef]
- Rai, A.; Pivoluska, M.; Plesch, M.; Sasmal, S.; Banik, M.; Ghosh, S. Device-independent bounds from Cabello’s nonlocality argument. Phys. Rev. A 2021, 103, 062219. [Google Scholar] [CrossRef]
- Rabelo, R.; Zhi, L.; Scarani, V. Device-independent bounds for Hardy’s experiment. Phys. Rev. Lett. 2012, 109, 180401. [Google Scholar] [CrossRef] [PubMed]
- Kaniewski, J. Analytic and nearly optimal self-testing bounds for the Clauser-Horne-Shimony-Holt and Mermin inequalities. Phys. Rev. Lett. 2016, 117, 070402. [Google Scholar] [CrossRef]
- Svetlichny, G. Distinguishing three-body from two-body nonseparability by a Bell-type inequality. Phys. Rev. D 1987, 35, 3066. [Google Scholar] [CrossRef]
- Seevinck, M.; Svetlichny, G. Bell-Type Inequalities for Partial Separability in N-Particle Systems and Quantum Mechanical Violations. Phys. Rev. Lett. 2002, 89, 060401. [Google Scholar] [CrossRef]
- Coopmans, T.; Kaniewski, J.; Schaffner, C. Robust self-testing of two-qubit states. Phys. Rev. A 2019, 99, 052123. [Google Scholar] [CrossRef]
- Bardyn, C.; Liew, T.; Massar, S.; McKague, M.; Scarani, V. Device-independent state estimation based on Bell’s inequalities. Phys. Rev. A 2009, 80, 062327. [Google Scholar] [CrossRef]
- Das, S.; Banik, M.; Rai, A.; Gazi, M.; Kunkri, S. Hardy’s nonlocality argument as a witness for postquantum correlations. Phys. Rev. A 2013, 87, 012112. [Google Scholar] [CrossRef]
- Rahaman, R.; Wieśniak, M.; Żukowski, M. True multipartite entanglement Hardy test. Phys. Rev. A 2014, 90, 062338. [Google Scholar] [CrossRef]
- Collins, D.; Gisin, N.; Popescu, S.; Roberts, D.; Scarani, V. Bell-Type Inequalities to Detect True n-Body Nonseparability. Phys. Rev. Lett. 2002, 88, 170405. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Wang, Z.; Zhao, W.; Li, M. Tight Upper Bound for the Maximal Expectation Value of the N-Partite Generalized. Adv. Quantum Technol. 2024, 7, 2400101. [Google Scholar] [CrossRef]
- Bhunia, A.; Chattopadhyay, I.; Sarkar, D. Nonlocality without entanglement an acyclic configuration. Quantum Inf. Process. 2022, 21, 169. [Google Scholar] [CrossRef]
- Li, M.; Wang, Y.; Shi, F.; Yung, M. Local distinguishability based genuinely quantum nonlocality without entanglement. J. Phys. A Math. Theor. 2021, 54, 445301. [Google Scholar] [CrossRef]
- Lu, Y.; Cao, H.; Zuo, H.; Fei, S. Genuinely nonlocal sets without entanglement in multipartite systems. Phys. Rev. A 2024, 110, 022427. [Google Scholar] [CrossRef]
- Li, M.; Zheng, Z. Genuine hidden nonlocality without entanglement: From the perspective of local discrimination. New J. Phys. 2022, 24, 043036. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; Halder, S. Genuine activation of nonlocality: From locally available to locally hidden information. Phys. Rev. A 2021, 104, L050201. [Google Scholar] [CrossRef]
- Bennett, C.; DiVincenzo, D.; Fuchs, C.; Mor, T.; Rains, E.; Shor, P.; Smolin, J.; Wootters, W. Quantum nonlocality without entanglement. Phys. Rev. A 1999, 59, 1070. [Google Scholar] [CrossRef]
- Zapatero, V.; Leent, T.; Arnon-Friedman, R.; Liu, W.; Zhang, Q.; Weinfurter, H.; Curty, M. Advances in device-independent quantum key distribution. npj Quantum Inf. 2023, 9, 10. [Google Scholar] [CrossRef]
- Ignatius, W.; Koon, T.; Ernest, Y.; John, T.; Ghorai, S.; Charles, C. Security of device-independent quantum key distribution protocols: A review. Quantum 2023, 7, 932. [Google Scholar] [CrossRef]
- Cabello, A. “All versus Nothing” Inseparability for Two Observers. Phys. Rev. Lett. 2001, 87, 010403. [Google Scholar] [CrossRef]
- Gill, R. Time, finite statistics, and Bell’s fifth position. arXiv 2003, arXiv:quant-ph/0301059. [Google Scholar]
- Zhang, Y.; Glancy, S.; Knill, E. Efficient quantification of experimental evidence against local realism. Phys. Rev. A 2013, 88, 052119. [Google Scholar] [CrossRef]
- Ghosh, S.; Chowdhury, S.; Adhikary, R.; Roy, A.; Guha, T. Minimum detection efficiencies for loophole-free genuine nonlocality. Phys. Rev. A 2024, 109, 052202. [Google Scholar] [CrossRef]
- Xiang, Y.; Wang, H.; Hong, F. Detection efficiency in the loophole-free violation of Svetlichny’s inequality. Phys. Rev. A 2012, 86, 034102. [Google Scholar] [CrossRef]
- Barrett, J.; Kent, A.; Pironio, S. Maximally Nonlocal and Monogamous Quantum Correlations. Phys. Rev. Lett. 2006, 97, 170409. [Google Scholar] [CrossRef]
- Cervero-Martín, E.; Tomamichel, M. Device independent security of quantum key distribution from monogamy-of-entanglement games. Quantum 2025, 9, 1652. [Google Scholar] [CrossRef]
- Kumari, S.; Naikoo, J.; Ghosh, S.; Pan, A. Interplay of nonlocality and incompatibility breaking qubit channels. Phys. Rev. A 2023, 107, 022201. [Google Scholar] [CrossRef]
- Bera, S.; Gupta, S.; Majumdar, S. Device-independent quantum key distribution using random quantum states. Quantum Inf. Process. 2023, 22, 109. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, C.; Cao, H.; Xu, K.; Liu, B.; Huang, Y.; Li, C.; Guo, G.; Gisin, N.; Krivachy, T.; et al. Experimental genuine quantum nonlocality in the triangle network. arXiv 2024, arXiv:2401.15428v1. [Google Scholar] [CrossRef]
- Chen, Y.; Yong, X.; Zheng, Z. Protecting genuine tripartite nonlocality by weak measurement and quantum measurement reversal. Quantum Inf. Process. 2022, 21, 225. [Google Scholar] [CrossRef]
- Pandit, M.; Barasinski, A.; Márton, I.; Vértesi, T.; Laskowski, W. Optimal tests of genuine multipartite nonlocality. New J. Phys. 2022, 24, 123017. [Google Scholar] [CrossRef]
- Wang, N.; Yang, X.; Yang, Y.; Zhang, C.; Luo, M.; Liu, B.; Huang, Y.; Li, C.; Guo, G. Simultaneous verification of genuine multipartite nonlocality and full network nonlocality. Phys. Rev. Lett. 2025, 134, 080202. [Google Scholar] [CrossRef]
- Farkas, M. Unbounded device-independent quantum key rates from arbitrarily small non-locality. Phys. Rev. Lett. 2024, 132, 210803. [Google Scholar] [CrossRef]
- Rivera-Dean, J.; Steffinlongo, A.; Parker-Sánchez, N.; Acín, A.; Oudot, E. Device-independent quantum key distribution beyond qubits. New J. Phys. 2025, 27, 054512. [Google Scholar] [CrossRef]
- Tan, E.; Wolf, R. Entropy Bounds for Device-Independent Quantum Key Distribution with Local Bell Test. Phys. Rev. Lett. 2024, 133, 120803. [Google Scholar] [CrossRef]
- Hu, M.; Gao, T.; Yan, F. Strong quantum nonlocality with genuine entanglement in an N-qutrit system. Phys. Rev. A 2024, 109, 022220. [Google Scholar] [CrossRef]
- Xiong, Z.; Li, M.; Zheng, Z.; Li, L. Distinguishability-based genuine nonlocality with genuine multipartite entanglement. Phys. Rev. A 2024, 108, 022405. [Google Scholar] [CrossRef]
- Zhang, S.; Qiao, Q.; Bai, C. Locally distinguishing genuinely nonlocal sets with one GHZ state. Quantum Inf. Process. 2025, 24, 101. [Google Scholar] [CrossRef]
- Stachura, I.; Makuta, O.; Augusiak, R. Single Bell inequality to detect genuine nonlocality in three-qubit pure genuinely entangled states. New J. Phys. 2024, 26, 093029. [Google Scholar] [CrossRef]
- Marcellino, F.; Caspar, P.; Brydges, T.; Zbinden, H.; Thew, R. Toward heralded distribution of polarization entanglement. Optica Quantum 2024, 2, 181–188. [Google Scholar] [CrossRef]
- Villegas-Aguilar, L.; Polino, E.; Ghafari, F.; Quintino, M.; Laverick, K.; Berkman, I.; Rogge, S.; Shalm, L.; Tischler, N.; Cavalcanti, E.; et al. Nonlocality activation in a photonic quantum network. Nat. Commun. 2024, 15, 3112. [Google Scholar] [CrossRef]
- Leent, T.; Bock, M.; Fertig, F.; Garthoff, R.; Eppelt, S.; Zhou, Y.; Malik, P.; Seubert, M.; Bauer, T.; Rosenfeld, W.; et al. Entangling single atoms over 33 km telecom fibre. Nature 2022, 607, 69–84. [Google Scholar] [CrossRef]
- Ma, X.; Yuan, X.; Cao, Z.; Qi, B.; Zhang, Z. Quantum random number generation. npj Quantum Inf. 2016, 2, 16021. [Google Scholar] [CrossRef]
- Wagenknecht, C.; Li, C.; Reingruber, A.; Bao, X.; Goebel, A.; Chen, Y.; Zhang, A.; Chen, K.; Pan, J. Experimental demonstration of a heralded entanglement source. Nat. Photonics 2010, 4, 549–552. [Google Scholar] [CrossRef]
- Steffinlongo, A.; Navarro, M.; Cenni, M.; Valcarce, X.; Acín, A.; Oudot, E. Long-distance device-independent quantum key distribution using single-photon entanglement. arXiv 2024, arXiv:2409.17075. [Google Scholar]
- Sun, M.; Wang, W.; Zhou, X.; Zhang, C.; Wang, Q. Source monitoring twin-field quantum key distribution assisted with Hong-Ou-Mandel interference. Phys. Rev. Res. 2023, 5, 043179. [Google Scholar] [CrossRef]
- Zahidy, M.; Mikkelsen, M.; Müller, R.; Lio, B.; Krehbiel, M.; Wang, Y.; Bart, N.; Wieck, A.; Ludwig, A.; Galili, M.; et al. Quantum key distribution using deterministic single-photon sources over a field-installed fibre link. npj Quantum Inf. 2024, 10, 2. [Google Scholar] [CrossRef]
- Su, H. Monte Carlo approach to the evaluation of the security of device-independent quantum key distribution. New J. Phys. 2023, 25, 123036. [Google Scholar] [CrossRef]
- Zhou, L.; Sheng, Y. One-step device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron. 2022, 65, 250311. [Google Scholar] [CrossRef]
- Masini, M.; Sarkar, S. One-sided DI-QKD secure against coherent attacks over long distances. arXiv 2024, arXiv:2403.11850. [Google Scholar]
- Roy, P.; Bera, S.; Gupta, S.; Majumdar, A. Device-independent quantum secure direct communication under non-Markovian quantum channels. arXiv 2024, arXiv:2312.03040v2. [Google Scholar] [CrossRef]
- Pont, M.; Corrielli, G.; Fyrillas, A.; Agresti, I.; Carvacho, G.; Maring, N.; Emeriau, P.; Ceccarelli, F.; Albiero, R.; Ferreira, P.; et al. High-fidelity four-photon GHZ states on chip. npj Quantum Inf. 2024, 10, 50. [Google Scholar] [CrossRef]
- Ma, M.; Zheng, K.; Xu, X.; Sun, C.; Su, Q.; Yang, C.; Sun, Y. Experimental investigation of quantum correlations under restricted distrust in a semi-device-independent framework. Opti. Express 2024, 32, 43703–43715. [Google Scholar] [CrossRef]
- Li, G.; Yin, Z.; Zhang, W.; Chen, L.; Yin, P.; Peng, X.; Hong, X.; Chen, G.; Li, C.; Guo, G. Experimental full calibration of quantum devices in a semi-device-independent way. Optica 2013, 10, 1723–1728. [Google Scholar] [CrossRef]
- Roy-Deloison, T.; Lobo, E.; Pauwels, J.; Pironio, S. Device-Independent Quantum Key Distribution Based on Routed Bell Tests. PRX Quantum 2025, 6, 020311. [Google Scholar] [CrossRef]
- Gonzalez-Ruiz, E.; Rivera-Dean, J.; Cenni, M.; Sorensen, A.; Acin, A.; Oudot, E. Device-independent quantum key distribution with realistic single-photon source implementations. Opti. Express 2024, 32, 13181–13196. [Google Scholar] [CrossRef]
- Tan, E.; Sekatski, P.; Bancal, J.; Schwonnek, R.; Renner, R.; Sangouard, N.; Lim, C. Improved DIQKD protocols with finite-size analysis. Quantum 2022, 6, 880. [Google Scholar] [CrossRef]
- Chen, S.; Chang, C.; Chuu, C.; Li, C. Efficient Device-Independent Quantum Key Distribution. arXiv 2024, arXiv:2311.09871. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhong, W.; Du, M.; Shen, S.; Li, X.; Zhang, A.; Zhou, L.; Sheng, Y. Device-independent quantum secret sharing with noise preprocessing and postselection. Phys. Rev. A 2024, 110, 042403. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhen, Y.; Xu, F. Upper bound on device-independent quantum key distribution with two way classical postprocessing under individual attack. New J. Phys. 2022, 24, 113045. [Google Scholar] [CrossRef]
- Zhou, L.; Xu, B.; Zhong, W.; Sheng, Y. Device-Independent Quantum Secure Direct Communication with Single-Photon Sources. Phys. Rev. Appl. 2023, 19, 014036. [Google Scholar] [CrossRef]
- Wang, H.; Liao, D.; Guo, D.; Xin, J.; Kong, J. Continuous-variable (3,3)-threshold quantum secret sharing based on one-sided device-independent security. Phys. Lett. A 2023, 462, 128650. [Google Scholar] [CrossRef]
- Łukanowski, K.; Balanzó-Juandó, M.; Farkas, M.; Acín, A.; Kołodyński, J. Upper bounds on key rates in device-independent quantum key distribution based on convex-combination attacks. Quantum 2023, 7, 1199. [Google Scholar] [CrossRef]
- Nai, A.; Sharma, A.; Kumar, V.; Singh, S.; Mishra, S.; Chandrashekar, C.; Samanta, G. Beam-splitter-free, device-independent, high bit-rate, quantum random number generator based on temporal and spatial correlations of heralded single-photons. AVS Quantum Sci. 2025, 7, 011401. [Google Scholar] [CrossRef]
- Cheng, J.; Liang, S.; Qin, J.; Li, J.; Yan, Z.; Jia, X.; Xie, C.; Peng, K. Semi-device-independent quantum random number generator with a broadband squeezed state of light. npj Quantum Inf. 2024, 10, 20. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Zhao, M.; Han, D.; Liu, J.; Wang, M.; Gong, Q.; Xiang, Y.; He, Q.; Su, X. One-sided device-independent random number generation through fiber channels. Light Sci. Appl. 2025, 14, 25. [Google Scholar] [CrossRef]
- Sarkar, S. Certification of unbounded randomness with arbitrary noise. Phys. Rev. A 2025, 111, L010201. [Google Scholar] [CrossRef]
- Valcarce, X.; Sekatski, P.; Gouzien, E.; Melnikov, A.; Sangouard, N. Automated design of quantum-optical experiments for device-independent quantum key distribution. Phys. Rev. A 2023, 107, 062607. [Google Scholar] [CrossRef]
Reference | Scheme | Linewidth of Laser | OFL/ Phase Locking | Security Key Rate | Detector | Security Level |
---|---|---|---|---|---|---|
[66] | CV-QKD | 2 kHz and 4 kHz | OPLL/ Real time | 0.43 bit/pulse @5 km (~21 kb/s) 0.19 bit/pulse @10 km (~9.5 kb/s) | APD | High (collective attack) |
[67] | CV-QKD | 100 Hz | Intradyne detection/ Real time | 0.093 bit/symbol @5 km with 64 QAM (0.746 Gb/s) 0.019 bit/symbol @5 km with 32 QAM (0.194 Gb/s) 0.035 bit/symbol @10 km with 16 QAM (0.351 Gb/s) | Integrated PD | Very high (multiple attacks) |
[70] | CV-QKD | 100 Hz | OPLL/ Real time | 0.13 bit/symbol @10 km (2.6 Mbit/s) | BD | High (collective attack) |
[73] | FP-TF-QKD | 0.1 kHz and 2 kHz | OPLL/ Real-time | 8.75 × 10−12 bit/pulse @833.8 km (0.014 bit/s) | SSPD | Very high (decoy state) |
[74] | SNS-AOPP-TF-QKD | US | OPLL/ Post-processing | 3.11 × 10−12 bit/pulse @1002 km (0.0011 bit/s) | SNSPD | Very high (decoy state and coherent attack) |
[79] | SNS-AOPP-TF-QKD | US | Not needed/ Real-time | 6.4 × 10−10 bit/pulse @615.6 km (0.32 bit/s) | SNSPD | Very high (decoy state) |
[80] | SNS-AOPP-TF-QKD | OFC | Not needed/ Real time | 1.06 × 10−9 bit/symbol @546 km (0.53 bit/s) | SNSPD | Very high (decoy state) |
[81] | SNS-AOPP-TF-QKD | ~100 Hz | OIL/ Real time | 2.2 × 10−7 bit/pulse @254 km (110 bit/s) | APD | Very high (decoy state) |
[82] | NPL-TF-QKD | 5 kHz | Not needed/ Post-selection | 6.65 × 10−9 bit/pulse @504 km (2.05 bit/s) | SNSPD | Very high (decoy state) |
[86] | SNS-AOPP-TF-QKD | ~100 Hz | Not needed/ Post-processing | 9.67 × 10−8 bit/pulse @502 km (~10 bit/s) | SNSPD | Very high (decoy state) |
[92] | AMDI-QKD | US | Not needed/ Post-processing | 6.015 × 10−8 bit/pulse @504.67 km (150.4 bit/s) | SNSPD | Very high (decoy state) |
100 Hz | 4.004 × 10−5 bit/pulse @201.88 km (101.1 kbit/s) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, M. Advances of Quantum Key Distribution and Network Nonlocality. Entropy 2025, 27, 950. https://doi.org/10.3390/e27090950
Geng M. Advances of Quantum Key Distribution and Network Nonlocality. Entropy. 2025; 27(9):950. https://doi.org/10.3390/e27090950
Chicago/Turabian StyleGeng, Minming. 2025. "Advances of Quantum Key Distribution and Network Nonlocality" Entropy 27, no. 9: 950. https://doi.org/10.3390/e27090950
APA StyleGeng, M. (2025). Advances of Quantum Key Distribution and Network Nonlocality. Entropy, 27(9), 950. https://doi.org/10.3390/e27090950