A Novel Co-Designed Multi-Domain Entropy and Its Dynamic Synapse Classification Approach for EEG Seizure Detection
Abstract
1. Introduction
- A comprehensive multi-domain entropy (MDE) feature set is developed to characterize the nonlinear dynamics of EEG signals. Building upon the classical amplitude-sensitive permutation entropy (ASPE), this feature set integrates three advanced variants: refined composite multiscale ASPE (RCMASPE) for enhancing stability and noise robustness, discrete wavelet transform-based hierarchical ASPE (HASPE-DWT) to denote frequency-specific hierarchical features, and time-shift multiscale ASPE (TSMASPE) to model temporal evolution. Together, they provide a holistic representation of epileptic EEG complexity.
- A dynamic synapse classifier (DySC) is developed according to the MDE feature to enable structure-aware classification. Particularly, it consists of three parallel and semantically distinct processing pathways tailored to individual entropy sources. Their outputs are adaptively fused through a dynamic synaptic gating mechanism, effectively integrating heterogeneous information streams.
- Method comparisons are performed against state-of-the-art approaches using two epilepsy datasets (Bonn and CHB-MIT). The proposed DySC-MDE demonstrates satisfactory classification performance, validating the co-design idea in improving automated EEG seizure detection.
2. Proposed Method
2.1. Datasets
2.2. MDE Feature Set
2.2.1. ASPE Feature
2.2.2. RCMASPE Feature
2.2.3. HASPE-DWT Feature
2.2.4. TSMASPE Feature
2.3. DySC Classifier
2.4. Evaluation Metrics
2.5. Experimental Configurations
3. Experimental Results
3.1. Bonn Dataset Results
3.2. CHB-MIT Dataset Result
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Finkelstein, S.A.; Diamond, C.; Carson, A.; Stone, J. Incidence and prevalence of functional neurological disorder: A systematic review. J. Neurol. Neurosurg. Psychiatry 2025, 96, 383–395. [Google Scholar] [CrossRef]
- Li, J.W.; Barma, S.; Mak, P.U.; Pun, S.H.; Vai, M.I. Brain rhythm sequencing using EEG signals: A case study on seizure detection. IEEE Access 2019, 7, 160112–160124. [Google Scholar] [CrossRef]
- Ganatra, H.A. Machine learning in pediatric healthcare: Current trends, challenges, and future directions. J. Clin. Med. 2025, 14, 807. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Litscher, G.; Li, X. Epileptic seizure detection using machine learning: A systematic review and meta-analysis. Brain Sci. 2025, 15, 634. [Google Scholar] [CrossRef] [PubMed]
- Saeedinia, S.A.; Jahed-Motlagh, M.R.; Tafakhori, A.; Kasabov, N.K. Diagnostic biomarker discovery from brain EEG data using LSTM, reservoir-SNN, and NeuCube methods in a pilot study comparing epilepsy and migraine. Sci. Rep. 2024, 14, 10667. [Google Scholar] [CrossRef] [PubMed]
- Shoka, A.; Dessouky, M.; El-Sayed, A.; Hemdan, E.E.D. EEG seizure detection: Concepts, techniques, challenges, and future trends. Multimed. Tools Appl. 2023, 82, 42021–42051. [Google Scholar] [CrossRef]
- Saminu, S.; Xu, G.; Zhang, S.; Ab El Kader, I.; Aliyu, H.A.; Jabire, A.H.; Ahmed, Y.K.; Adamu, M.J. Applications of artificial intelligence in automatic detection of epileptic seizures using EEG signals: A review. Artif. Intell. Appl. 2023, 1, 11–25. [Google Scholar] [CrossRef]
- Chen, W.; Wang, Y.; Ren, Y.; Jiang, H.; Du, G.; Zhang, J.; Li, J. An automated detection of epileptic seizures EEG using CNN classifier based on feature fusion with high accuracy. BMC Med. Inform. Decis. Mak. 2023, 23, 96. [Google Scholar] [CrossRef]
- Akbari, H.; Sadiq, M.T. Detection of focal and non-focal EEG signals using non-linear features derived from empirical wavelet transform rhythms. Phys. Eng. Sci. Med. 2021, 44, 157–171. [Google Scholar] [CrossRef]
- Supriya, S.; Siuly, S.; Wang, H.; Zhang, Y. Epilepsy detection from EEG using complex network techniques: A review. IEEE Rev. Biomed. Eng. 2021, 16, 292–306. [Google Scholar] [CrossRef]
- Tuncer, T.; Dogan, S. An explainable EEG epilepsy detection model using friend pattern. Sci. Rep. 2025, 15, 16951. [Google Scholar] [CrossRef]
- Krishnan, P.T.; Erramchetty, S.K.; Balusa, B.C. Advanced framework for epilepsy detection through image-based EEG signal analysis. Front. Hum. Neurosci. 2024, 18, 1336157. [Google Scholar] [CrossRef]
- Sadiq, M.; Kadhim, M.N.; Al-shammary, D.; Milanova, M.; Member, S. Novel EEG classification based on Hellinger distance for seizure epilepsy detection. IEEE Access 2024, 12, 127357–127367. [Google Scholar] [CrossRef]
- Omidvar, M.; Zahedi, A.; Bakhshi, H. EEG signal processing for epilepsy seizure detection using 5-level Db4 discrete wavelet transform, GA-based feature selection and ANN/SVM classifiers. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 10395–10403. [Google Scholar] [CrossRef]
- Rizal, A.; Hadiyoso, S.; Ramdani, A.Z. FPGA-based implementation for real-time epileptic EEG classification using Hjorth descriptor and KNN. Electronics 2022, 11, 3026. [Google Scholar] [CrossRef]
- Li, J.; Feng, G.; Ling, C.; Ren, X.; Liu, X.; Zhang, S.; Wang, L.; Chen, Y.; Zeng, X.; Chen, R. A resource-efficient multi-entropy fusion method and its application for EEG-based emotion recognition. Entropy 2025, 27, 96. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, Y.; Xin, Q.; Jin, G.; Zhao, Y.; Zhou, W.; Liu, G. EEG-based seizure detection using dual-branch CNN-ViT network integrating phase and power spectrograms. Brain Sci. 2025, 15, 509. [Google Scholar] [CrossRef] [PubMed]
- Buldu, A.; Kaplan, K.; Kuncan, M. A hybrid study for epileptic seizure detection based on deep learning using EEG data. J. Univers. Comput. Sci. 2024, 30, 909. [Google Scholar] [CrossRef]
- Sun, C.; Xu, C.; Li, H.; Bo, H.; Ma, L.; Li, H. A novel multi-feature fusion attention neural network for the recognition of epileptic EEG signals. Front. Comput. Neurosci. 2024, 18, 1393122. [Google Scholar] [CrossRef] [PubMed]
- Zaid, Y.; Sah, M.; Direkoglu, C. Pre-processed and combined EEG data for epileptic seizure classification using deep learning. Biomed. Signal Process. Control 2023, 84, 104738. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, X.; Jiang, J.; Xiao, N.; Guo, J.; Zhuang, K.; Li, L.; Yu, H.; Wu, T.; Zheng, M.; et al. Automatic interictal epileptiform discharge (IED) detection based on convolutional neural network (CNN). Front. Mol. Biosci. 2023, 10, 1146606. [Google Scholar] [CrossRef]
- Varlı, M.; Yılmaz, H. Multiple classification of EEG signals and epileptic seizure diagnosis with combined deep learning. J. Comput. Sci. 2023, 67, 101943. [Google Scholar] [CrossRef]
- Cao, X.; Zheng, S.; Zhang, J.; Chen, W.; Du, G. A hybrid CNN-Bi-LSTM model with feature fusion for accurate epilepsy seizure detection. BMC Med. Inform. Decis. Mak. 2025, 25, 6. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.; Pan, W.; Liu, J.; Shang, J. Epileptic seizure prediction via multidimensional transformer and recurrent neural network fusion. J. Transl. Med. 2024, 22, 895. [Google Scholar] [CrossRef]
- Huang, L.; Zhou, K.; Chen, S.; Chen, Y.; Zhang, J. Automatic detection of epilepsy from EEGs using a temporal convolutional network with a self-attention layer. Biomed. Eng. Online 2024, 23, 50. [Google Scholar] [CrossRef] [PubMed]
- Peng, R.; Du, Z.; Zhao, C.; Luo, J.; Liu, W.; Chen, X.; Wu, D. Multi-branch mutual-distillation Transformer for EEG-based seizure subtype classification. IEEE Trans. Neural Syst. Rehabil. Eng. 2024, 32, 831–839. [Google Scholar] [CrossRef] [PubMed]
- Bhagubai, M.; Vandecasteele, K.; Swinnen, L.; Macea, J.; Chatzichristos, C.; De Vos, M.; Van Paesschen, W. The power of ECG in semi-automated seizure detection in addition to two-channel behind-the-ear EEG. Bioengineering 2023, 10, 491. [Google Scholar] [CrossRef]
- Cao, J.; Fang, Y.; Cui, X.; Zheng, R.; Jiang, T.; Gao, F. Synchronized video and EEG based childhood epilepsy seizure detection. IEEE Trans. Emerg. Top. Comput. Intell. 2024, 8, 3742–3753. [Google Scholar] [CrossRef]
- Tian, C.; Zhang, F. EEG-based epilepsy detection with graph correlation analysis. Front. Med. 2025, 12, 1549491. [Google Scholar] [CrossRef]
- Fu, Z.; Duan, L.; Xie, Y.; Jiang, K.; Zhang, Y. EEG-based epilepsy identification using multiple feature spaces consistent fusion with label relaxation. J. Mech. Med. Biol. 2025, 25, 2540013. [Google Scholar] [CrossRef]
- Zang, H.; Jiao, L.; Qin, T.; Qian, J. Joint low-rank representation and transfer multi-view learning approach for EEG epilepsy classification. J. Mech. Med. Biol. 2024, 24, 2440074. [Google Scholar] [CrossRef]
- Pei, Y.; Xu, J.; Chen, Q.; Wang, C.; Yu, F.; Zhang, L.; Luo, W. DTP-Net: Learning to reconstruct EEG signals in time-frequency domain by multi-scale feature reuse. IEEE J. Biomed. Health Inform. 2024, 28, 2662–2673. [Google Scholar] [CrossRef]
- Islam, T.; Basak, M.; Islam, R.; Roy, A.D. Investigating population-specific epilepsy detection from noisy EEG signals using deep-learning models. Heliyon 2023, 9, e23106. [Google Scholar] [CrossRef]
- Zhao, K.; Xu, D.; He, K.; Peng, G. Interpretable emotion classification using multi-domain feature of EEG signals. IEEE Sens. J. 2023, 23, 11879–11891. [Google Scholar] [CrossRef]
- Andrzejak, R.G.; Lehnertz, K.; Mormann, F.; Rieke, C.; David, P.; Elger, C.E. Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Phys. Rev. E 2001, 64, 061907. [Google Scholar] [CrossRef] [PubMed]
- Goldberger, A.L.; Amaral, L.A.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 2000, 101, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.G.; Cho, A.; Kim, H.; Kim, K.J. Single-channel seizure detection with clinical confirmation of seizure locations using CHB-MIT dataset. Front. Neurol. 2024, 15, 1389731. [Google Scholar] [CrossRef]
- Huang, J.; Dong, H.; Li, N.; Li, Y.; Zhu, J.; Li, X.; Hu, B. Amplitude-sensitive permutation entropy: A novel complexity measure incorporating amplitude variation for physiological time series. Chaos 2025, 35, 033113. [Google Scholar] [CrossRef]
- Shah, S.Y.; Larijani, H.; Gibson, R.M.; Liarokapis, D. Epileptic seizure classification based on random neural networks using discrete wavelet transform for electroencephalogram signal decomposition. Appl. Sci. 2024, 14, 599. [Google Scholar] [CrossRef]
- Zhu, P.; Zhou, W.; Cao, C.; Liu, G.; Liu, Z.; Shang, W. A novel SE-TCN-BiGRU hybrid network for automatic seizure detection. IEEE Access 2024, 12, 127328–127340. [Google Scholar] [CrossRef]
- Mazurek, S.; Blanco, R.; Falcó-Roget, J.; Crimi, A. Explainable graph neural networks for EEG classification and seizure detection in epileptic patients. In Proceedings of the IEEE International Symposium on Biomedical Imaging (ISBI), Athens, Greece, 27–30 May 2024; pp. 1–5. [Google Scholar]
- Yuan, J.; Zeng, X.; Zhou, J.; Li, J.; Lv, J.; Chen, R.; Chen, K.; Yang, W.; Zhang, Y. Data-driven real-time home energy management system based on adaptive dynamic programming. Electr. Power Syst. Res. 2025, 238, 111055. [Google Scholar] [CrossRef]
- Li, J.W.; Feng, G.Y.; Lv, J.J.; Chen, R.J.; Wang, L.J.; Zeng, X.X.; Yuan, J.; Hu, X.L.; Zhao, H.M.; Lu, X. A rhythmic encoding approach based on EEG time-frequency image for epileptic seizure detection. Biomed. Signal Process. Control 2025, 99, 106824. [Google Scholar] [CrossRef]
- Tolie, H.F.; Ren, J.; Chen, R.; Zhao, H.; Elyan, E. Blind sonar image quality assessment via machine learning: Leveraging micro-and macro-scale texture and contour features in the wavelet domain. Eng. Appl. Artif. Intell. 2025, 141, 109730. [Google Scholar] [CrossRef]
- Li, J.W.; Feng, G.Y.; Ren, X.M.; Ling, C.; Zhang, S.; Qin, Y.P.; Wang, J.J.; Yu, Y.Y.; Liu, X.; Chen, R.J. An explainable RSPWVD based EEG microstate sequence approach for scalp connectivity estimation and channel selection in patients with epilepsy. Technol. Health Care 2025. early access. [Google Scholar] [CrossRef]
- Sun, C.; Jing, J.; Turley, N.; Alcott, C.; Kang, W.Y.; Cole, A.J.; Goldenholz, D.M.; Lam, A.; Amorim, E.; Chu, C.; et al. Harvard electroencephalography database: A comprehensive clinical electroencephalographic resource from four Boston hospitals. Epilepsia 2025. early access. [Google Scholar] [CrossRef]
- Dan, J.; Pale, U.; Amirshahi, A.; Cappelletti, W.; Ingolfsson, T.M.; Wang, X.; Cossettini, A.; Bernini, A.; Benini, L.; Beniczky, S.; et al. SzCORE: A seizure community open-source research evaluation framework for the validation of EEG-based automated seizure detection algorithms. Epilepsia 2025. early access. [Google Scholar] [CrossRef]
Subset | Subject | Data Size | Description |
---|---|---|---|
A | Healthy | 100 | Surface EEG, eyes open |
B | Healthy | 100 | Surface EEG, eyes closed |
C | Epileptic | 100 | Intracranial EEG, hippocampal |
D | Epileptic | 100 | Intracranial EEG, epileptic focus |
E | Epileptic | 100 | Intracranial EEG, hippocampal focus (seizure) |
Case | Task | Clinical Significance |
---|---|---|
Case 1 | A vs. E | Distinguishing between healthy individuals and the state of epileptic seizures is the basis for epilepsy diagnosis. |
Case 2 | C vs. E | Distinguishing between the ictal (seizure) and interictal (between seizures) periods in the same patient is vital for epilepsy early warning and real-time monitoring. |
Case 3 | ABCD vs. E | Distinguishing all non-ictal states (including healthy and interictal states) from the ictal state is a key task in designing a reliable seizure detection system. |
Case 4 | AB vs. CD vs. E | Distinguishing the three core physiological states finely is required for the proposed method to demonstrate its satisfactory discriminative ability. |
Case | chb01 | chb02 | chb03 | chb04 | chb05 | chb07 | chb08 | chb10 | chb11 | chb15 | chb17 | chb22 | chb23 |
Channel | P8-O2 | P7-O1 | Fp1-F3 | P8-O2 | P7-O1 | Fp1-F3 | Fp1-F3 | P7-O1 | P7-O1 | P7-O1 | P8-O2 | Fp1-F3 | Fp1-F3 |
Feature | Parameter | Value |
---|---|---|
ASPE | Embedding dimension (m) | 3 |
Time delay (τ) | 1 | |
RCMASPE | Maximum scale factor (Smax) | 10 |
HASPE-DWT | Wavelet basis function | db4 |
Decomposition level (L) | 4 (Bonn) 5 (CHB-MIT) | |
TSMASPE | Maximum time-lag factor (Kmax) | 10 |
Hyperparameter | Value |
---|---|
hidden_size_pathway | 16 |
hidden_size_fusion | 32 |
Cross-entropy loss function | Quasi-Newton method |
MaxIterations | 50 |
MaxFunction evaluations | 1,000,000 |
Metrics | A vs. E (Case 1) | C vs. E (Case 2) | ABCD vs. E (Case 3) | AB vs. CD vs. E (Case 4) |
---|---|---|---|---|
Accuracy (%) | 96.50 ± 4.12 | 97.50 ± 2.64 | 96.80 ± 2.53 | 93.80 ± 5.85 |
Precision (%) | 96.36 ± 4.35 | 97.30 ± 3.09 | 96.24 ± 4.76 | 92.47 ± 8.63 |
Recall (%) | 97.01 ± 3.41 | 97.58 ± 2.72 | 94.47 ± 4.37 | 92.69 ± 8.64 |
Specificity (%) | 96.41 ± 4.22 | 97.29 ± 2.88 | 95.03 ± 3.98 | 92.38 ± 8.56 |
F1-score (%) | 97.01 ± 3.41 | 97.58 ± 2.72 | 94.47 ± 4.37 | 96.83 ± 2.90 |
Metrics | 10-Fold Cross-Validation | 20-Fold Cross-Validation |
---|---|---|
Accuracy (%) | 98.88 ± 2.30 | 98.93 ± 2.47 |
Precision (%) | 98.92 ± 2.15 | 98.94 ± 2.47 |
Recall (%) | 98.75 ± 2.64 | 98.87 ± 2.54 |
Specificity (%) | 98.82 ± 2.44 | 98.89 ± 2.51 |
F1-score (%) | 98.75 ± 2.64 | 98.87 ± 2.54 |
Metrics | A vs. E (Case 1) | C vs. E (Case 2) | ABCD vs. E (Case 3) | AB vs. CD vs. E (Case 4) |
---|---|---|---|---|
Accuracy (%) | 95.50 ± 5.10 | 97.50 ± 5.50 | 96.60 ± 3.25 | 91.60 ± 5.79 |
Precision (%) | 94.47 ± 7.43 | 97.83 ± 4.72 | 95.07 ± 5.85 | 90.81 ± 8.41 |
Recall (%) | 95.95 ± 4.97 | 97.75 ± 4.84 | 93.63 ± 7.39 | 87.63 ± 9.48 |
Specificity (%) | 94.48 ± 6.56 | 97.48 ± 5.52 | 93.76 ± 5.84 | 87.98 ± 9.45 |
F1-score (%) | 95.95 ± 4.97 | 97.55 ± 4.84 | 93.63 ± 7.39 | 95.32 ± 3.26 |
Work | Main Methodology | Evaluation Metrics (%) | ||||
---|---|---|---|---|---|---|
Accuracy | Precision | Recall | Specificity | F1-Score | ||
Chen et al. [8] | DWT-ENTROPIES-CNN | 99.30 | 100.00 | 98.62 | 100.00 | / |
Buldu et al. [18] | CWT-Resnet-101 | 99.00 | 99.40 | 99.20 | / | 99.30 |
CWT-Resnet-50 | 99.60 | 99.50 | 99.70 | / | 99.60 | |
CWT-AlexNet | 98.30 | 98.30 | 98.40 | / | 98.30 | |
CWT-GoogLeNet | 99.60 | 99.50 | 99.70 | / | 99.60 | |
CWT-VGG-19 | 83.30 | 85.00 | 86.40 | / | 85.70 | |
Sun et al. [19] | HG-SANet | 100.00 | 100.00 | 100.00 | / | / |
Varlı and Yılmaz [22] | 2D-CNN-CWT-LSTM | 99.81 | 99.81 | 99.81 | 99.81 | 99.81 |
2D-CNN-STFT-LSTM | 96.50 | 96.36 | 97.01 | 96.41 | 97.01 | |
Cao et al. [23] | CNN-Bi-LSTM | 99.50 | 100.00 | 99.01 | 100.00 | 99.50 |
Huang et al. [25] | TCN-SA | 97.37 | 99.91 | 94.88 | 99.91 | 97.30 |
Zang et al. [31] | LRR-TML | 97.85 | 97.87 | 97.72 | / | / |
This work | DySC-MDE | 96.50 | 96.36 | 97.01 | 96.41 | 97.01 |
Work | Main Methodology | Evaluation Metrics (%) | ||||
---|---|---|---|---|---|---|
Accuracy | Precision | Recall | Specificity | F1-Score | ||
Chen et al. [8] | DWT-ENTROPIES-CNN | 99.90 | 99.81 | 100.00 | 99.80 | / |
Buldu et al. [18] | CWT-Resnet-101 | 99.80 | 99.80 | 99.60 | / | 99.70 |
CWT-Resnet-50 | 99.30 | 99.40 | 99.20 | / | 99.30 | |
CWT-AlexNet | 98.30 | 98.30 | 98.40 | / | 98.30 | |
CWT-GoogLeNet | 98.70 | 98.30 | 99.10 | / | 98.70 | |
CWT-VGG-19 | 80.00 | 72.00 | 78.30 | / | 75.00 | |
Sun et al. [19] | HG-SANet | 99.50 | 99.50 | 99.55 | / | / |
Varlı and Yılmaz [22] | 2D-CNN-CWT-LSTM | 99.09 | 99.11 | 99.09 | 99.09 | 99.09 |
2D-CNN-STFT-LSTM | 99.62 | 99.63 | 99.62 | 99.62 | 99.62 | |
Cao et al. [23] | CNN-Bi-LSTM | 99.75 | 99.83 | 99.69 | 99.84 | 99.74 |
Zang et al. [31] | LRR-TML | 98.61 | 98.65 | 98.21 | / | / |
This work | DySC-MDE | 97.50 | 97.30 | 97.58 | 97.29 | 97.58 |
Work | Main Methodology | Evaluation Metrics (%) | ||||
---|---|---|---|---|---|---|
Accuracy | Precision | Recall | Specificity | F1-Score | ||
Chen et al. [8] | DWT-ENTROPIES-CNN | 98.47 | 96.74 | 95.80 | 99.16 | / |
Zaid et al. [20] | DNN(simple)-FFT | 98.23 | / | 94.71 | 99.12 | / |
1D-CNN(complex)-FFT | 98.91 | / | 96.43 | 99.54 | / | |
1D-CNN(moderate)-FFT | 99.13 | / | 98.32 | 99.34 | / | |
Varlı and Yılmaz [22] | 2D-CNN-CWT-LSTM | 99.42 | 99.42 | 99.42 | 98.64 | 99.42 |
2D-CNN-STFT-LSTM | 98.20 | 98.20 | 98.20 | 98.99 | 98.09 | |
Cao et al. [23] | CNN-Bi-LSTM | 98.93 | 99.46 | 99.23 | 97.85 | 99.34 |
Zhu et al. [24] | STFT-TLG | 99.75 | 99.75 | 98.75 | 98.75 | 99.74 |
This work | DySC-MDE | 96.80 | 96.24 | 94.47 | 95.03 | 94.47 |
Work | Main Methodology | Evaluation Metrics (%) | ||||
---|---|---|---|---|---|---|
Accuracy | Precision | Recall | Specificity | F1-Score | ||
Buldu et al. [18] | CWT-Resnet-101 | 99.30 | 99.30 | 99.40 | / | 99.30 |
CWT-Resnet-50 | 98.20 | 98.40 | 98.20 | / | 98.30 | |
CWT-AlexNet | 98.00 | 98.40 | 98.60 | / | 98.30 | |
CWT-GoogLeNet | 96.10 | 95.40 | 96.60 | / | 96.00 | |
CWT-VGG-19 | 92.70 | 91.40 | 93.60 | / | 92.50 | |
Sun et al. [19] | HG-SANet | 98.20 | 98.00 | 98.56 | / | / |
Varlı and Yılmaz [22] | 2D-CNN-CWT-LSTM | 97.30 | 97.31 | 97.30 | 98.35 | 97.30 |
2D-CNN-STFT-LSTM | 98.20 | 98.20 | 98.20 | 98.99 | 98.09 | |
Cao et al. [23] | CNN-Bi-LSTM | 95.71 | 97.05 | 94.90 | 96.80 | 95.91 |
Zhu et al. [24] | STFT-TLG | 98.75 | 98.75 | 98.33 | 99.17 | 98.74 |
Fu et al. [30] | GA-DCNN | 93.00 | 90.00 | 90.60 | 93.00 | 90.00 |
This work | DySC-MDE | 93.80 | 92.47 | 92.69 | 92.38 | 96.83 |
Work | Main Methodology | Evaluation Metrics (%) | ||||
---|---|---|---|---|---|---|
Accuracy | Precision | Recall | Specificity | F1-Score | ||
Cao et al. [23] | CNN-Bi-LSTM | 98.43 | 99.14 | 97.84 | 99.21 | 98.39 |
Zhu et al. [24] | STFT-TLG | 97.30 | 97.03 | 98.24 | 97.27 | 97.80 |
Chuang et al. [37] | Stacked 2D-CNN (18 channels) | 98.47 | / | 100.00 | 98.47 | / |
Stacked 2D-CNN (4 channels) | 97.73 | / | 97.05 | 97.72 | / | |
Stacked 2D-CNN (single channel) | 94.93 | / | 97.69 | 94.92 | / | |
Shah et al. [39] | RNN-DWT | 93.27 | / | 90.10 | 96.53 | / |
RNN-FFT | 84.60 | / | 79.17 | 89.60 | / | |
Zhu et al. [40] | SE-CNN-BiGRU | 93.70 | / | 91.57 | 98.29 | 83.98 |
SE-TCN-BiGRU (with noise) | 91.48 | / | 91.60 | 97.67 | 84.07 | |
SE-TCN-BiGRU | 93.78 | / | 93.31 | 92.65 | 85.55 | |
This work | DySC-MDE | 98.93 | 98.94 | 98.87 | 98.89 | 98.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, G.; Li, J.; Zhong, Y.; Zhang, S.; Liu, X.; Vai, M.I.; Lin, K.; Zeng, X.; Yuan, J.; Chen, R. A Novel Co-Designed Multi-Domain Entropy and Its Dynamic Synapse Classification Approach for EEG Seizure Detection. Entropy 2025, 27, 919. https://doi.org/10.3390/e27090919
Feng G, Li J, Zhong Y, Zhang S, Liu X, Vai MI, Lin K, Zeng X, Yuan J, Chen R. A Novel Co-Designed Multi-Domain Entropy and Its Dynamic Synapse Classification Approach for EEG Seizure Detection. Entropy. 2025; 27(9):919. https://doi.org/10.3390/e27090919
Chicago/Turabian StyleFeng, Guanyuan, Jiawen Li, Yicheng Zhong, Shuang Zhang, Xin Liu, Mang I Vai, Kaihan Lin, Xianxian Zeng, Jun Yuan, and Rongjun Chen. 2025. "A Novel Co-Designed Multi-Domain Entropy and Its Dynamic Synapse Classification Approach for EEG Seizure Detection" Entropy 27, no. 9: 919. https://doi.org/10.3390/e27090919
APA StyleFeng, G., Li, J., Zhong, Y., Zhang, S., Liu, X., Vai, M. I., Lin, K., Zeng, X., Yuan, J., & Chen, R. (2025). A Novel Co-Designed Multi-Domain Entropy and Its Dynamic Synapse Classification Approach for EEG Seizure Detection. Entropy, 27(9), 919. https://doi.org/10.3390/e27090919