Phase-Space Approach for Topological Phase Transitions in Silicene
Abstract
1. Introduction
2. Selected Spectral Properties of the Silicene Hamiltonian
3. Phase-Space Approach
4. Results
4.1. Wigner Distribution Function for Silicene in EM Field
4.2. Combined Wigner–Rényi Entropy for Electrons and Holes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
WDF | Wigner distribution function |
BI | Band insulator |
TI | Topological insulator |
VSPM | Valley–spin-polarized metal |
TPT | Topological phase transition |
References
- Palma-Chilla, L.; Lazzús, J.A. Thermodynamic Behavior of Doped Graphene: Impact of Heavy Dopant Atoms. Entropy 2024, 26, 1093. [Google Scholar] [CrossRef] [PubMed]
- Geim, A.K. Graphene: Status and Prospects. Science 2009, 324, 1530. [Google Scholar] [CrossRef] [PubMed]
- Dyrdał, A.; Barnaś, J. Intrinsic contribution to spin Hall and spin Nernst effects in a bilayer graphene. J. Phys. Condens. Matter 2012, 24, 275302. [Google Scholar] [CrossRef] [PubMed]
- Houssa, M.; Dimoulas, A.; Molle, A. Silicene: A review of recent experimental and theoretical investigations. J. Phys. Condens. Matter 2015, 27, 253002. [Google Scholar] [CrossRef]
- Ezawa, M. Quantum Hall Effects in Silicene. J. Phys. Soc. Jpn. 2012, 81, 064705. [Google Scholar] [CrossRef]
- Dyrdał, A.; Barnaś, J. Intrinsic spin Hall effect in silicene: Transition from spin Hall to normal insulator. Phys. Status Solidi RRL 2012, 6, 340. [Google Scholar] [CrossRef]
- Chowdhury, S.; Jana, D. A theoretical review on electronic, magnetic and optical properties of silicene. Rep. Prog. Phys. 2016, 79, 126501. [Google Scholar] [CrossRef]
- Zandvliet, H.J.W. The quantum valley Hall effect in twisted bilayer silicene and germanene. J. Phys. Condens. Matter 2025, 37, 205001. [Google Scholar] [CrossRef]
- Tian, W.; Yu, W.; Shi, J.; Wang, Y. The Property, Preparation and Application of Topological Insulators: A Review. Materials 2017, 10, 814. [Google Scholar] [CrossRef]
- Shan, G.; Tan, H.; Ma, R.; Zhao, H.; Huang, W. Recent progress in emergent two-dimensional silicene. Nanoscale 2023, 15, 2982. [Google Scholar] [CrossRef]
- Palma-Chilla, L.; Lazzús, J.A.; Flores, J.C. Entropy and Negative Specific Heat of Doped Graphene: Topological Phase Transitions and Nernst’s Theorem Revisited. Entropy 2024, 26, 771. [Google Scholar] [CrossRef]
- Zhou, L. Entanglement Phase Transitions in Non-Hermitian Kitaev Chains. Entropy 2024, 26, 272. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.H.; Le, H.A.; Yang, S.R.E. Mutual Information and Correlations across Topological Phase Transitions in Topologically Ordered Graphene Zigzag Nanoribbons. Entropy 2023, 25, 1449. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, F.; Cheng, W. Anomalous Behavior of the Non-Hermitian Topological System with an Asymmetric Coupling Impurity. Entropy 2025, 27, 78. [Google Scholar] [CrossRef] [PubMed]
- Qiu, G.; Yang, H.Y.; Chong, S.K.; Cheng, Y.; Tai, L.; Wang, K.L. Manipulating Topological Phases in Magnetic Topological Insulators. Nanomaterials 2023, 13, 2655. [Google Scholar] [CrossRef]
- Dominguez, F.; Scharf, B.; Hankiewicz, E.M. Crystalline Weyl semimetal phase in Quantum Spin Hall systems under magnetic fields. SciPost Phys. Core 2022, 5, 024. [Google Scholar] [CrossRef]
- Yarmohammadi, M.; Koshkaki, S.R.; Berakdar, J.; Bukov, M.; Kolodrubetz, M.H. Probing topological phases in a perturbed Kane-Mele model via RKKY interaction: Application to monolayer jacutingaite Pt2HgSe3. Phys. Rev. B 2025, 111, 014440. [Google Scholar] [CrossRef]
- Dias, N.C.; de Gosson, M.A.; Prata, J.N. A refinement of the Robertson-Schrödinger uncertainty principle and a Hirschman-Shannon inequality for Wigner distributions. J. Fourier Anal. Appl. 2019, 25, 210. [Google Scholar] [CrossRef]
- Spisak, B.J.; Woźniak, D.; Kołaczek, D. Dynamics of the τ-Wigner distribution function. J. Phys. A 2022, 55, 504003. [Google Scholar] [CrossRef]
- Chruściński, D.; Młodawski, K. Wigner function and Schrödinger equation in phase-space representation. Phys. Rev. A 2005, 71, 052104. [Google Scholar] [CrossRef]
- Drummond, N.D.; Zólyomi, V.; Fal’ko, V.I. Electrically tunable band gap in silicene. Phys. Rev. B 2012, 85, 075423. [Google Scholar] [CrossRef]
- Ni, Z.; Liu, Q.; Tang, K.; Zheng, J.; Zhou, J.; Qin, R.; Gao, Z.; Yu, D.; Lu, J. Tunable Bandgap in Silicene and Germanene. Nano Lett. 2012, 12, 113. [Google Scholar] [CrossRef]
- Tabert, C.J.; Nicol, E.J. Magneto-optical conductivity of silicene and other buckled honeycomb lattices. Phys. Rev. B 2013, 88, 085434. [Google Scholar] [CrossRef]
- Liu, C.C.; Jiang, H.; Yao, Y. Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin. Phys. Rev. B 2011, 84, 195430. [Google Scholar] [CrossRef]
- Ezawa, M. Valley-Polarized Metals and Quantum Anomalous Hall Effect in Silicene. Phys. Rev. Lett. 2012, 109, 055502. [Google Scholar] [CrossRef] [PubMed]
- Tabert, C.J.; Nicol, E.J. Valley-Spin Polarization in the Magneto-Optical Response of Silicene and Other Similar 2D Crystals. Phys. Rev. Lett. 2013, 110, 197402. [Google Scholar] [CrossRef] [PubMed]
- Aftab, T. Valleytronics and phase transition in silicene. Phys. Lett. A 2017, 381, 935. [Google Scholar] [CrossRef]
- Arfken, G.B.; Weber, H.J.; Harris, F.E. Mathematical Methods for Physicists: A Comprehensive Guide; Academic Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Kenfack, A.; Życzkowski, K. Negativity of the Wigner function as an indicator of non-classicality. J. Opt. B Quantum Semiclass. Opt. 2004, 6, 396. [Google Scholar] [CrossRef]
- Kalka, M.; Spisak, B.J.; Woźniak, D.; Wołoszyn, M.; Kołaczek, D. Dynamical entropic measure of nonclassicality of phase-dependent family of Schrödinger cat states. Sci. Rep. 2023, 13, 16266. [Google Scholar] [CrossRef]
- Woźniak, D.; Spisak, B.J.; Kalka, M.; Wołoszyn, M.; Wleklińska, M.; Pigoń, P.; Kołaczek, D. Interaction time of Schrödinger cat states with a periodically driven quantum system: Symplectic covariance approach. Phys. Rev. A 2024, 110, 022416. [Google Scholar] [CrossRef]
- Manfredi, G.; Feix, M.R. Entropy and Wigner functions. Phys. Rev. E 2000, 62, 4665. [Google Scholar] [CrossRef]
- Yuan, Y.; Li, K.; Wang, J.H.; Ma, K. The Wigner Functions for a Spin-1/2 Relativistic Particle in the Presence of Magnetic Field. Int. J. Theor. Phys. 2010, 49, 1993. [Google Scholar] [CrossRef]
- Díaz-Bautista, E.; Betancur-Ocampo, Y. Phase-space representation of Landau and electron coherent states for uniaxially strained graphene. Phys. Rev. B 2020, 101, 125402. [Google Scholar] [CrossRef]
- Betancur-Ocampo, Y.; Díaz-Bautista, E.; Stegmann, T. Valley-dependent time evolution of coherent electron states in tilted anisotropic Dirac materials. Phys. Rev. B 2022, 105, 045401. [Google Scholar] [CrossRef]
- Bolivar, J.C.; Elvira, R. Rényi entropies and topological quantum numbers in 2D gapped Dirac materials. Phys. Lett. A 2017, 381, 1753. [Google Scholar] [CrossRef]
- Romera, E.; Calixto, M.; Bolívar, J.C. Information measures and topological-band insulator transitions in 2D-Dirac materials under external circularly polarized lasers, and static electric and magnetic fields. Phys. A Stat. Mech. Appl. 2018, 511, 174. [Google Scholar] [CrossRef]
- Calixto, M.; Romera, E. Inverse participation ratio and localization in topological insulator phase transitions. J. Stat. Mech. Theory Exp. 2015, 2015, P06029. [Google Scholar] [CrossRef]
- Romera, E.; Calixto, M. Band inversion at critical magnetic fields in a silicene quantum dot. Europhys. Lett. 2015, 111, 37006. [Google Scholar] [CrossRef]
- Calixto, M.; Romera, E. Identifying topological-band insulator transitions in silicene and other 2D gapped Dirac materials by means of Rényi-Wehrl entropy. Europhys. Lett. 2015, 109, 40003. [Google Scholar] [CrossRef]
- Nagy, Á.; Romera, E. Relative Rényi entropy for atoms. Int. J. Quantum Chem. 2008, 109, 2490. [Google Scholar] [CrossRef]
- Wobst, A.; Ingold, G.L.; Hänggi, P.; Weinmann, D. From ballistic motion to localization: A phase space analysis. Eur. Phys. J. B 2002, 27, 11. [Google Scholar] [CrossRef]
- Lutterbach, L.G.; Davidovich, L. Method for Direct Measurement of the Wigner Function in Cavity QED and Ion Traps. Phys. Rev. Lett. 1997, 78, 2547. [Google Scholar] [CrossRef]
- Flühmann, C.; Home, J.P. Direct Characteristic-Function Tomography of Quantum States of the Trapped-Ion Motional Oscillator. Phys. Rev. Lett. 2020, 125, 043602. [Google Scholar] [CrossRef]
- Winkelmann, F.R.; Weidner, C.A.; Ramola, G.; Alt, W.; Meschede, D.; Alberti, A. Direct measurement of the Wigner function of atoms in an optical trap. J. Phys. B At. Mol. Opt. Phys. 2022, 55, 194004. [Google Scholar] [CrossRef]
- Schmied, R.; Treutlein, P. Tomographic reconstruction of the Wigner function on the Bloch sphere. New J. Phys. 2011, 13, 065019. [Google Scholar] [CrossRef]
- Chen, B.; Geng, J.; Zhou, F.; Song, L.; Shen, H.; Xu, N. Quantum state tomography of a single electron spin in diamond with Wigner function reconstruction. Appl. Phys. Lett. 2019, 114, 041102. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalka, M.; Pigoń, P.; Spisak, B.J. Phase-Space Approach for Topological Phase Transitions in Silicene. Entropy 2025, 27, 857. https://doi.org/10.3390/e27080857
Kalka M, Pigoń P, Spisak BJ. Phase-Space Approach for Topological Phase Transitions in Silicene. Entropy. 2025; 27(8):857. https://doi.org/10.3390/e27080857
Chicago/Turabian StyleKalka, Maciej, Piotr Pigoń, and Bartłomiej J. Spisak. 2025. "Phase-Space Approach for Topological Phase Transitions in Silicene" Entropy 27, no. 8: 857. https://doi.org/10.3390/e27080857
APA StyleKalka, M., Pigoń, P., & Spisak, B. J. (2025). Phase-Space Approach for Topological Phase Transitions in Silicene. Entropy, 27(8), 857. https://doi.org/10.3390/e27080857