Decentralized Consensus Protocols on SO(4)N and TSO(4)N with Reshaping
Abstract
1. Introduction
2. Background
2.1. Communication Graph
2.2. Properties of
2.3. Morse–Bott–Lyapunov Function and Reshaping
- Base case (no reshaping): ;
- Case 1 reshaping: , ;
- Case 2 reshaping: , .
3. Consensus on SO(4)N with Reshaping
3.1. Proposed Consensus Protocol on
3.2. Local Stability Analysis
3.3. Illustrative Examples
3.3.1. Initial Conditions near Consensus
3.3.2. Five-Agent Ring Graph with Initial Conditions Away from Consensus
3.3.3. Nine-Agent Ring Graph
3.3.4. Nine-Agent Ring Lattice
4. Consensus on TSO(4)N with Reshaping
4.1. Proposed Consensus Protocol on
4.2. Illustrative Examples
4.2.1. Initial Conditions near Consensus
4.2.2. Five-Agent Ring Graph with Initial Conditions Away from Consensus
4.2.3. Nine-Agent Ring Graph
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Sarlette, A.; Sepulchre, R. Consensus Optimization on Manifolds. SIAM J. Control Optim. 2009, 48, 56–76. [Google Scholar] [CrossRef]
- Sepulchre, R. Consensus on nonlinear spaces. Annu. Rev. Control 2011, 35, 56–64. [Google Scholar] [CrossRef]
- Saber, R.; Murray, R. Consensus protocols for networks of dynamic agents. In Proceedings of the 2003 American Control Conference, Denver, CO, USA, 4–6 June 2003; Volume 2. [Google Scholar] [CrossRef]
- Crnkic, A.; Jacimovic, V. Consensus and balancing on the three-sphere. J. Glob. Optim. 2020, 76, 575–586. [Google Scholar] [CrossRef]
- Liu, B. Consensus-Based Distributed Machine Learning: Theory, Algorithms, and Applications. Ph.D. Thesis, University of Manchester, Manchester, UK, 2021; p. AAI29216577. [Google Scholar]
- Kong, L.; Lin, T.; Koloskova, A.; Jaggi, M.; Stich, S. Consensus Control for Decentralized Deep Learning. arXiv 2021, arXiv:2102.04828. [Google Scholar] [CrossRef]
- Magureanu, H.; Usher, N. Consensus learning: A novel decentralised ensemble learning paradigm. arXiv 2024, arXiv:2402.16157. [Google Scholar] [CrossRef]
- James, S.; Abbeel, P. Bingham Policy Parameterization for 3D Rotations in Reinforcement Learning. arXiv 2022, arXiv:2202.03957. [Google Scholar] [CrossRef]
- Zhou, Y.; Barnes, C.; Lu, J.; Yang, J.; Li, H. On the Continuity of Rotation Representations in Neural Networks. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 5738–5746. [Google Scholar] [CrossRef]
- Chaturvedi, N.A.; Sanyal, A.K.; McClamroch, N.H. Rigid-Body Attitude Control. IEEE Control Syst. Mag. 2011, 31, 30–51. [Google Scholar] [CrossRef]
- Matni, N.; Horowitz, M. A convex approach to consensus on SO(n). In Proceedings of the 2014 52nd Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, IL, USA, 30 September–3 October 2014. [Google Scholar] [CrossRef]
- Lageman, C.; Sarlette, A.; Sepulchre, R. Synchronization with partial state feedback on SO(n). In Proceedings of the 48 h IEEE Conference on Decision and Control (CDC) Held Jointly with 2009 28th Chinese Control Conference, Shanghai, China, 15–18 December 2009. [Google Scholar] [CrossRef]
- Sarlette, A.; Bonnabel, S.; Sepulchre, R. Coordinated Motion Design on Lie Groups. IEEE Trans. Autom. Control 2010, 55, 1047–1058. [Google Scholar] [CrossRef]
- Markdahl, J.; Thunberg, J.; Hoppe, J.; Hu, X. Analytical solutions to feedback systems on the special orthogonal group SO(n). In Proceedings of the 52nd IEEE Conference on Decision and Control, Firenze, Italy, 10–13 December 2013; pp. 5246–5251. [Google Scholar] [CrossRef]
- Markdahl, J.; Hu, X. Exact solutions to a class of feedback systems on SO(n). Automatica 2016, 63, 138–147. [Google Scholar] [CrossRef]
- Butcher, E.; Mathavaraj, S. Multi-Agent Spacecraft Attitude Formation and Tracking Control using Reshaping. J. Astronaut. Sci. 2025, 72, 5. [Google Scholar] [CrossRef]
- Butcher, E. Stabilization of Consensus and Balanced Configurations on the Circle with Ring Topology and Heterogeneous Input Delays. IFAC-PapersOnLine 2022, 55, 151–156. [Google Scholar] [CrossRef]
- Maadani, M.; Butcher, E. Pose consensus control of multi-agent rigid body systems with homogenous and heterogeneous communication delays. Int. J. Robust Nonlinear Control 2022, 32, 3714–3736. [Google Scholar] [CrossRef]
- Maadani, M.; Butcher, E. 6-DOF consensus control of multi-agent rigid body systems using rotation matrices. Int. J. Control 2021, 95, 2667–2681. [Google Scholar] [CrossRef]
- Mathavaraj, S.; Butcher, E. Rigid-Body Attitude Control, Synchronization, and Bipartite Consensus Using Feedback Reshaping. J. Guid. Control Dyn. 2023, 46, 1095–1111. [Google Scholar] [CrossRef]
- Townsend, A.; Stillman, M.; Strogatz, S.H. Dense networks that do not synchronize and sparse ones that do. Chaos Interdiscip. J. Nonlinear Sci. 2020, 30, 083142. [Google Scholar] [CrossRef]
- Trenkler, G.; Trenkler, D. The Vector Cross Product and 4 × 4 Skew-Symmetric Matrices; Physica-Verlag HD: Heidelberg, Germany, 2008; pp. 95–104. [Google Scholar] [CrossRef]
- Politi, T. A Formula for the Exponential of a Real Skew-Symmetric Matrix of Order 4. BIT Numer. Math. 2001, 41, 842–845. [Google Scholar] [CrossRef]
- Mortari, D. On the Rigid Rotation Concept in n-Dimensional Spaces. J. Astronaut. Sci. 2001, 49, 401–420. [Google Scholar] [CrossRef]
- Erdoğdu, M.; Özdemir, M. Simple, Double and Isoclinic Rotations with Applications. Math. Sci. Appl. E-Notes 2020, 8, 11–24. [Google Scholar] [CrossRef]
- Perez-Gracia, A.; Thomas, F. On Cayley’s Factorization of 4D Rotations and Applications. Adv. Appl. Clifford Algebr. 2017, 27, 523–538. [Google Scholar] [CrossRef]
- Bar-Itzhack, I.; Markley, F. Minimal parameter solution of the orthogonal matrix differential equation. IEEE Trans. Autom. Control 1990, 35, 314–317. [Google Scholar] [CrossRef]
- Altafini, C. Consensus Problems on Networks with Antagonistic Interactions. IEEE Trans. Autom. Control 2013, 58, 935–946. [Google Scholar] [CrossRef]
- Butcher, E.A.; Maadani, M. Rigid Body Attitude Cluster Consensus Control on Weighted Cooperative-Competitive Networks. In Proceedings of the 2024 American Control Conference (ACC), Toronto, ON, Canada, 10–12 July 2024; pp. 3049–3054. [Google Scholar] [CrossRef]
- Canale, E.A.; Monzón, P. Exotic equilibria of Harary graphs and a new minimum degree lower bound for synchronization. Chaos Interdiscip. J. Nonlinear Sci. 2015, 25, 023106. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Butcher, E.A.; Spaeth, V. Decentralized Consensus Protocols on SO(4)N and TSO(4)N with Reshaping. Entropy 2025, 27, 743. https://doi.org/10.3390/e27070743
Butcher EA, Spaeth V. Decentralized Consensus Protocols on SO(4)N and TSO(4)N with Reshaping. Entropy. 2025; 27(7):743. https://doi.org/10.3390/e27070743
Chicago/Turabian StyleButcher, Eric A., and Vianella Spaeth. 2025. "Decentralized Consensus Protocols on SO(4)N and TSO(4)N with Reshaping" Entropy 27, no. 7: 743. https://doi.org/10.3390/e27070743
APA StyleButcher, E. A., & Spaeth, V. (2025). Decentralized Consensus Protocols on SO(4)N and TSO(4)N with Reshaping. Entropy, 27(7), 743. https://doi.org/10.3390/e27070743