Mock Modularity at Work, or Black Holes in a Forest
Abstract
1. Introduction
2. Modular and Mock Modular Forms
2.1. Modular Forms
2.2. Mock Modular Forms
2.3. Higher Depth Mock Modular Forms
2.4. Jacobi Forms and Their Variations
3. Indefinite Theta Series
- 1.
- for all , ;
- 2.
- for any subset and any set of , ,
- 3.
- for all and any set of , ,
To construct the completion of a theta series whose kernel is a combination of sign functions, it is sufficient to replace each product of the sign functions according to the rule
4. BPS Indices and Their Generating Functions
4.1. BPS Indices in Type IIA/CY
4.2. DT Invariants
4.3. Generating Functions of D4-D2-D0 BPS Indices
5. Modular Anomaly
5.1. Origin of Modularity
- D(-1)-instantons mixed with perturbative and -corrections;
- D1-instantons mixed with worldsheet instantons (known also as -strings);
- D3-instantons;
- D5-instantons mixed with NS5-instantons (known also as -five-branes).
5.2. Sketch of the Derivation
- First, we need to compute the Darboux coordinates to be substituted into (66). Unfortunately, the TBA-like Equation (63) cannot be solved in a closed form. Nevertheless, it can always be solved by iterations: first plug in into the r.h.s. to get up to the first order, then plug in the result to get the second order, and so on. This procedure produces an asymptotic expansion, which can be seen as an expansion in the number of instantons or, equivalently, in powers of the BPS indices . The resulting perturbative solution can be expressed as a sum over rooted trees with vertices labeled by charges. Below we will find many more different trees, so this is our first step into a “forest”.
- The next step is to substitute the perturbative solution into the instanton generating potential and to re-expand it in powers of . The result can again be written as a sum over trees, but this time these are unrooted labeled trees:
- The expansion (67) is not yet exactly what we want because it is expressed through the rational DT invariants , while we are looking for an expression in terms of the MSW invariants . The difference between them is due to the fact explained in Section 4.2 that the DT invariants are not actually constant, but depend on the moduli. Fortunately, it is possible to express through using the split attractor flow conjecture, which allows to count contributions of all bound states to an index in terms of indices evaluated at their attractor points [23,100]. The result is represented as a sum over all possible consecutive splits of bound states into their constituents and can be conveniently written as
- After one substitutes (68) into (67), one can make two observations. First, since for charges with vanishing the tree index is independent of their components, the only dependence on these components is in through the factor (see (65)) and in the MSW invariants. Therefore, the sum over gives rise precisely to the generating functions (61) where are the residue classes appearing in the decomposition (57) of charges . Second, due to the spectral flow invariance, the MSW invariants and hence their generating functions are independent of the parameters also appearing in the decomposition (57). As a result, the sum over these parameters produces some theta series with non-trivial kernels constructed from the integrals appearing in (67) and the tree indices arising from DT invariants. Combining everything together, one arrives at the following representationAs follows from the Hodge index theorem, for corresponding to an ample divisor, the associated quadratic form has signature . Since are also ample, is an indefinite theta series of signature . Its convergence is ensured by the integrals in (67) entering the kernel, which can be shown to decay exponentially along the “dangerous” directions of the lattice.
- Since must be a modular form, the representation (69) implies that the modular properties of are determined by the modular properties of the theta series: if are all modular, the generating functions are also modular; if not— must have a modular anomaly to cancel the anomaly of the theta series. The easiest way to check the modularity of is to verify whether its kernel satisfies the differential Equation (43). It turns out that all the non-trivial integrals pass through this equation, whereas the sign functions coming from the tree indices spoil it. Thus, it is the existence of bound states and the corresponding wall-crossing that are responsible for the appearance of a modular anomaly, exactly as in the story about immortal dyons in compactifications [16].
- Once the origin of the anomaly in each term with fixed n has been identified, one can try to “improve” the expansion (69) by reshuffling it. Namely, we can look for the modular completion of the theta series and ask whether this completion can be achieved by “redefining” the generating functions . This is an extremely non-trivial problem because the theta series depend on all scalar fields of the effective theory (playing the role of coordinates on the moduli space ), while are functions of only the axio-dilaton . Nevertheless, the above idea can be realized! It leads to a new representation
5.3. Equation for the Modular Completion
5.3.1. Collinear Charges
6. Extensions
6.1. Degenerations
6.1.1. Degenerate Quadratic Form
6.1.2. Non-Degenerate Quadratic Form
6.2. Non-Compact Calabi–Yau
6.3. Refinement
- As a description of modular properties of the generating functions of refined BPS indices on non-compact CYs (or in any other case, like in [123], where these indices can be well-defined);
- As a useful trick to compute modular completions in the unrefined case.
6.3.1. Non-Commutative Structure
7. Solution of the Modular Anomaly
- Find any mock modular form having the modular anomaly described by (72);
- Represent
7.1. Anomalous Coefficients
7.2. One-Modulus Case
7.3. Partial Solutions
7.4. General Solution
7.4.1. Strategy
- First, one introduces the refinement and looks for vector-valued mock Jacobi-like forms of depth , weight , index
- Next, one extends the charge lattice so that it possesses a set of null vectors suitable for solving the anomaly equation and associates with the lattice extension a vector of additional refinement parameters satisfying certain orthogonality properties with the null vectors.To this end, let us define , , , and introduce -dimensional vectors such that their components are all non-vanishing integers and sum to zero, . Of course, there are plenty of possible choices of such vectors and the following construction does not depend on their concrete form. Given these data, one looks for vector valued multi-variable mock Jacobi-like forms depending on refinement parameters where and satisfying a new anomaly equation:The crucial property of (154) is that its solutions that are regular at give rise to the functions introduced at the previous step. The relation between the two sets of functions is given byIt is the presence of the additional factors of the Jacobi theta function in (155) that leads to an effective extension of the lattice defining the theta series that capture the coefficients on the r.h.s. of (154). While the original lattice, which can be read off, e.g., from (146), is given by
has many null vectors. In the following we will use two sets of vectors belonging to
with the second set consisting of null vectors. Both sets are extensions of the vectors , defined as in (76)
Note also that the theta series appearing on the r.h.s. of (154) depend on the following vector of refinement parametersFor all null vectors, is proportional to z and independent of . - After that, one reduces the solution to the original lattice using the relation (156).
- Finally, one evaluates the unrefined limit by means of
7.4.2. Lattices, Glue Vectors and Discriminant Groups
7.4.3. The Result
- A vector valued Jacobi-like form (for , it is taken to be a trivial scalar function )
in the bi-vector representation, is the index (153), and
- A function playing the role of a kernel of indefinite theta series on
- A function associated with the lattice
, which can be seen as a sublattice of
is the generic theta series (42), and on the r.h.s. we used the representation of in terms of -tuples;
- The theta series associated with the lattices appearing in the decomposition (166)
8. Applications
8.1. DT, PT, GV and Topological Strings
8.1.1. Polar Terms from Wall-Crossing
8.1.2. The Role of Topological Strings
- First, one solves the A-model topological string by the direct integration method and obtains its partition function
- In principle, the previous step could be skipped because the MNOP formula directly relates the topological string partition function with the generating functions of DT and PT invariantsThe formula readsIn practice, however, one computes the PT and DT invariants always by passing through the GV invariants and evaluating the generating series degree by degree. Then, it is more convenient to use the plethystic form of the MNOP relation [137]Note that the Castelnuovo bound (197) combined with the MNOP formula implies a similar bound on the genus of GV invariants
- At the final step, one applies the formulas from Section 8.1.1 to compute the rank 0 DT invariants appearing in the generating series . Note that, a priori, this approach is not restricted to the polar terms and can be applied to compute any rank 0 DT invariant.
8.1.3. Results
Hypergeometric Threefolds
Quotients
8.1.4. Implications for Topological Strings
8.2. Vafa–Witten Theory
8.2.1. Hirzebruch and del Pezzo
- Since we work with refined invariants from the very beginning, there is no need to introduce the refinement artificially and take the unrefined limit in the end. Furthermore, the generating functions must be mock Jacobi forms and not just Jacobi-like as in Section 7.4. This is because here we are computing the generating functions of Poincaré polynomials depending on the refinement parameter z only through , whereas there the refinement was just a trick to compute some auxiliary functions.
- There is no need to do a lattice extension because is a unimodular lattice of signature and for the Hirzebruch and del Pezzo surfaces . In all relevant cases, has several null vectors (at least two), but only one of them appears in the construction of indefinite theta series.
- Finally, although one can solve (119), as any anomaly equation, only up to a holomorphic modular ambiguity, the ambiguity is severely constrained by the requirements to be a Jacobi form with given modular properties and to ensure the existence of the unrefined limit. As a result, after comparing with known results in the literature, it is possible to suggest a universal ansatz for this ambiguity so that there is no need to fix it through the computation of any polar terms.
- From Example 9, we know that the relevant magnetic charges are all collinear, , with determined by the first Chern class of the surface (113). The relevant lattice of electric charges is with the quadratic form where is the intersection matrix on S (see (115)), specified for Hirzebruch and del Pezzo surfaces in Appendix E. This motivates the introduction of the reduced charge vector where the electric charge can be decomposed as (cf. (144))One can also show that the quadratic form (74) takes the form
- We define the anti-symmetrized Dirac product of charges depending on a vector :Note that coincides with the usual Dirac product of the reduced charge vectors relevant for the non-compact CY underlying this construction.
- For each surface S, we pick a specific null vector . For and , in the basis described in Appendix E, it is given by
- We define the theta series
8.2.2.
8.3. Higher Supersymmetry
8.3.1. Helicity Supertraces
8.3.2. Conjecture
- The holomorphic anomaly equation can be non-trivial, and hence the generating functions can be mock modular, only for -BPS states.
- Only -BPS states can contribute to the r.h.s. of the holomorphic anomaly equation.
- For only the contribution of -BPS states with survives the unrefined limit.
8.3.3.
-BPS States
-BPS States
8.3.4.
-BPS States
-BPS States
-BPS States
9. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Trees
Appendix B. Generalized Error Functions
- The functions do not depend on the choice of the basis and are smooth functions of .
- They solve the Vignéras Equation (43) with .
- At large , they reduce to .
- Their derivative is given by
- If one of the vectors is null, it reduces the rank of the generalized error function. Namely, for , one hasIn other words, for such vectors, the completion is not required.
Appendix C. Lattice Factorization and Theta Series
Appendix D. Degenerate Case with Non-Degenerate Quadratic Form
Appendix E. Hirzebruch and del Pezzo surfaces
References
- Strominger, A.; Vafa, C. Microscopic origin of the Bekenstein-Hawking entropy. Phys. Lett. 1996, B379, 99–104. [Google Scholar] [CrossRef]
- Maldacena, J.M.; Strominger, A. Statistical Entropy of Four-Dimensional Extremal Black Holes. Phys. Rev. Lett. 1996, 77, 428–429. [Google Scholar] [CrossRef] [PubMed]
- Maldacena, J.M.; Strominger, A.; Witten, E. Black hole entropy in M-theory. J. High Energy Phys. 1997, 12, 2. [Google Scholar] [CrossRef]
- Dijkgraaf, R.; Verlinde, H.L.; Verlinde, E.P. Counting dyons in N = 4 string theory. Nucl. Phys. 1997, B484, 543–561. [Google Scholar] [CrossRef]
- Dabholkar, A. Exact counting of black hole microstates. Phys. Rev. Lett. 2005, 94, 241301. [Google Scholar] [CrossRef]
- Dabholkar, A.; Denef, F.; Moore, G.W.; Pioline, B. Exact and asymptotic degeneracies of small black holes. J. High Energy Phys. 2005, 8, 21. [Google Scholar] [CrossRef]
- Gaiotto, D.; Strominger, A.; Yin, X. The M5-brane elliptic genus: Modularity and BPS states. J. High Energy Phys. 2007, 8, 70. [Google Scholar] [CrossRef]
- Sen, A. Black Hole Entropy Function, Attractors and Precision Counting of Microstates. Gen. Rel. Grav. 2008, 40, 2249–2431. [Google Scholar] [CrossRef]
- Benini, F.; Hristov, K.; Zaffaroni, A. Black hole microstates in AdS4 from supersymmetric localization. J. High Energy Phys. 2016, 5, 54. [Google Scholar] [CrossRef]
- Cassani, D.; Murthy, S. Quantum black holes: Supersymmetry and exact results. arXiv 2025, arXiv:2502.15360. [Google Scholar]
- Iliesiu, L.V.; Murthy, S.; Turiaci, G.J. Black hole microstate counting from the gravitational path integral. arXiv 2022, arXiv:2209.13602. [Google Scholar]
- Dabholkar, A.; Gomes, J.; Murthy, S. Quantum black holes, localization and the topological string. J. High Energy Phys. 2011, 6, 19. [Google Scholar] [CrossRef]
- Dabholkar, A.; Gomes, J.; Murthy, S. Nonperturbative black hole entropy and Kloosterman sums. J. High Energy Phys. 2015, 3, 74. [Google Scholar] [CrossRef]
- Murthy, S. Black holes and modular forms in string theory. arXiv 2023, arXiv:2305.11732. [Google Scholar]
- Gaiotto, D. Re-recounting dyons in N = 4 string theory. arXiv 2005, arXiv:hep-th/0506249. [Google Scholar]
- Dabholkar, A.; Murthy, S.; Zagier, D. Quantum Black Holes, Wall Crossing, and Mock Modular Forms. arXiv 2012, arXiv:1208.4074. [Google Scholar]
- Denef, F. Supergravity flows and D-brane stability. J. High Energy Phys. 2000, 8, 50. [Google Scholar] [CrossRef]
- Zwegers, S. Mock Theta Functions. Ph.D. Dissertation, Utrecht University, Utrecht, The Netherlands, 2002. [Google Scholar]
- Zagier, D. Ramanujan’s mock theta functions and their applications (after Zwegers and Ono-Bringmann). Astérisque 2009, 326, 143–164. [Google Scholar]
- Maldacena, J.M.; Moore, G.W.; Strominger, A. Counting BPS black holes in toroidal type II string theory. arXiv 1999, arXiv:hep-th/9903163. [Google Scholar]
- Witten, E. Elliptic Genera and Quantum Field Theory. Commun. Math. Phys. 1987, 109, 525. [Google Scholar] [CrossRef]
- de Boer, J.; Cheng, M.C.N.; Dijkgraaf, R.; Manschot, J.; Verlinde, E. A farey tail for attractor black holes. J. High Energy Phys. 2006, 11, 24. [Google Scholar] [CrossRef]
- Denef, F.; Moore, G.W. Split states, entropy enigmas, holes and halos. J. High Energy Phys. 2011, 1111, 129. [Google Scholar] [CrossRef]
- Alexandrov, S.; Manschot, J.; Pioline, B. D3-instantons, Mock Theta Series and Twistors. J. High Energy Phys. 2013, 1304, 2. [Google Scholar] [CrossRef]
- Alexandrov, S.; Banerjee, S.; Manschot, J.; Pioline, B. Multiple D3-instantons and mock modular forms I. Commun. Math. Phys. 2017, 353, 379–411. [Google Scholar] [CrossRef]
- Alexandrov, S.; Pioline, B. Black holes and higher depth mock modular forms. Commun. Math. Phys. 2019, 374, 549–625. [Google Scholar] [CrossRef]
- Alexandrov, S.; Bendriss, K. Modular anomaly of BPS black holes. J. High Energy Phys. 2024, 12, 180. [Google Scholar] [CrossRef]
- Alexandrov, S.; Manschot, J.; Pioline, B. S-duality and refined BPS indices. Commun. Math. Phys. 2020, 380, 755–810. [Google Scholar] [CrossRef]
- Alexandrov, S. Vafa-Witten invariants from modular anomaly. Commun. Num. Theor. Phys. 2021, 15, 149–219. [Google Scholar] [CrossRef]
- Alexandrov, S. Rank N Vafa–Witten invariants, modularity and blow-up. Adv. Theor. Math. Phys. 2021, 25, 275–308. [Google Scholar] [CrossRef]
- Moore, G.W.; Nekrasov, N.; Shatashvili, S. D particle bound states and generalized instantons. Commun. Math. Phys. 2000, 209, 77–95. [Google Scholar] [CrossRef]
- Nekrasov, N.A. Seiberg-Witten prepotential from instanton counting. Adv. Theor. Math. Phys. 2003, 7, 831–864. [Google Scholar] [CrossRef]
- Alexandrov, S.; Nampuri, S. Refinement and modularity of immortal dyons. J. High Energy Phys. 2021, 1, 147. [Google Scholar] [CrossRef]
- Gaiotto, D.; Yin, X. Examples of M5-Brane Elliptic Genera. J. High Energy Phys. 2007, 11, 4. [Google Scholar] [CrossRef]
- Collinucci, A.; Wyder, T. The Elliptic genus from split flows and Donaldson-Thomas invariants. J. High Energy Phys. 2010, 5, 81. [Google Scholar] [CrossRef]
- Van Herck, W.; Wyder, T. Black Hole Meiosis. J. High Energy Phys. 2010, 4, 47. [Google Scholar] [CrossRef]
- Alexandrov, S.; Feyzbakhsh, S.; Klemm, A.; Pioline, B.; Schimannek, T. Quantum geometry, stability and modularity. Commun. Num. Theor. Phys. 2024, 18, 49–151. [Google Scholar] [CrossRef]
- McGovern, J. New Examples of Abelian D4D2D0 Indices. arXiv 2024, arXiv:2412.01149. [Google Scholar]
- Alexandrov, S.; Gaddam, N.; Manschot, J.; Pioline, B. Modular bootstrap for D4-D2-D0 indices on compact Calabi–Yau threefolds. Adv. Theor. Math. Phys. 2023, 27, 683–744. [Google Scholar] [CrossRef]
- Alexandrov, S.; Bendriss, K. Mock modularity of Calabi-Yau threefolds. arXiv 2024, arXiv:2411.17699. [Google Scholar]
- Alexandrov, S.; Feyzbakhsh, S.; Klemm, A.; Pioline, B. Quantum geometry and mock modularity. arXiv 2023, arXiv:2312.12629. [Google Scholar]
- Baranovsky, V.; Katzarkov, L.; Kontsevich, M.; Sheshmani, A. Shifted symplectic structures on derived Quot Schemes, Degenerations and Categorification of DT invariants. Talk by A. Sheshmani at the International Congress of Basic Sciences, BIMSA, Beijing, China, 14–26 July 2024.
- Maulik, D.; Nekrasov, N.; Okounkov, A.; Pandharipande, R. Gromov-Witten theory and Donaldson-Thomas theory. I. Compos. Math. 2006, 142, 1263–1285. [Google Scholar] [CrossRef]
- Maulik, D.; Nekrasov, N.; Okounkov, A.; Pandharipande, R. Gromov-Witten theory and Donaldson-Thomas theory. II. Compos. Math. 2006, 142, 1286–1304. [Google Scholar] [CrossRef]
- Bershadsky, M.; Cecotti, S.; Ooguri, H.; Vafa, C. Holomorphic anomalies in topological field theories. Nucl. Phys. 1993, B405, 279–304. [Google Scholar] [CrossRef]
- Huang, M.x.; Klemm, A.; Quackenbush, S. Topological string theory on compact Calabi-Yau: Modularity and boundary conditions. In Homological Mirror Symmetry; Springer: Berlin/Heidelberg, Germany, 2008; pp. 1–58. [Google Scholar]
- Grimm, T.W.; Klemm, A.; Marino, M.; Weiss, M. Direct Integration of the Topological String. J. High Energy Phys. 2007, 8, 58. [Google Scholar] [CrossRef]
- Apostol, T. Modular Functions and Dirichlet Series in Number Theory; Graduate Texts in Mathematics; Springer: Berlin/Heidelberg, Germany, 1976. [Google Scholar]
- Bruinier, J.H.; Geer, G.; Harder, G.; Zagier, D. The 1-2-3 of Modular Forms; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Bantay, P.; Gannon, T. Vector-valued modular functions for the modular group and the hypergeometric equation. Commun. Num. Theor. Phys. 2007, 1, 651–680. [Google Scholar] [CrossRef]
- Manschot, J.; Moore, G.W. A Modern Fareytail. Commun. Num. Theor. Phys. 2010, 4, 103–159. [Google Scholar] [CrossRef]
- Manschot, J. On the space of elliptic genera. Commun. Num. Theor. Phys. 2008, 2, 803–833. [Google Scholar] [CrossRef]
- Zagier, D. Nombres de classes et formes modulaires de poids 3/2. C. R. Acad. Sc. Paris 1975, 281, 883–886. [Google Scholar]
- Vafa, C.; Witten, E. A Strong coupling test of S duality. Nucl. Phys. 1994, B431, 3–77. [Google Scholar] [CrossRef]
- Bringmann, K.; Kaszian, J.; Milas, A. Higher depth quantum modular forms, multiple Eichler integrals, and SL(3) false theta functions. arXiv 2017, arXiv:1704.06891. [Google Scholar] [CrossRef]
- Eichler, M.; Zagier, D. The Theory of Jacobi Forms; Vol. 55: Progress in Mathematics; Birkhäuser Boston Inc.: Boston, MA, USA, 1985; p. v+148. [Google Scholar]
- Zagier, D. Modular forms and differential operators. Proc. Math. Sci. 1994, 104, 57–75. [Google Scholar] [CrossRef]
- Cohen, P.B.; Manin, Y.; Zagier, D. Automorphic Pseudodifferential Operators. In Algebraic Aspects of Integrable Systems: In Memory of Irene Dorfman; Fokas, A.S., Gelfand, I.M., Eds.; Birkhäuser Boston: Boston, MA, USA, 1997; pp. 17–47. [Google Scholar] [CrossRef]
- Nazaroglu, C. r-Tuple Error Functions and Indefinite Theta Series of Higher-Depth. Commun. Num. Theor. Phys. 2018, 12, 581–608. [Google Scholar] [CrossRef]
- Alexandrov, S.; Banerjee, S.; Manschot, J.; Pioline, B. Multiple D3-instantons and mock modular forms II. Commun. Math. Phys. 2018, 359, 297–346. [Google Scholar] [CrossRef]
- Funke, J.; Kudla, S. Theta integrals and generalized error functions, II. arXiv 2017, arXiv:1708.02969. [Google Scholar]
- Funke, J.; Kudla, S. Indefinite theta series: The case of an N-gon. Pure Appl. Math. Q. 2025, 19, 191–231. [Google Scholar] [CrossRef]
- Zhang, X. On the convergence of certain indefinite theta series. Acta Arith. 2024, 215, 309–325. [Google Scholar] [CrossRef]
- Alexandrov, S.; Banerjee, S.; Manschot, J.; Pioline, B. Indefinite theta series and generalized error functions. Sel. Math. 2018, 24, 3927–3972. [Google Scholar] [CrossRef]
- Dabholkar, A.; Putrov, P. Three avatars of mock modularity. Int. J. Mod. Phys. A 2021, 36, 2130020. [Google Scholar] [CrossRef]
- Funke, J.; Kudla, S.S. Mock modular forms and geometric theta functions for indefinite quadratic forms. J. Phys. Math. Theor. 2017, 50, 404001. [Google Scholar] [CrossRef]
- Vignéras, M.F. Séries thêta des formes quadratiques indéfinies. Springer Lect. Notes 1977, 627, 227–239. [Google Scholar]
- Minasian, R.; Moore, G.W. K-theory and Ramond-Ramond charge. J. High Energy Phys. 1997, 11, 2. [Google Scholar] [CrossRef]
- Sen, A. Arithmetic of Quantum Entropy Function. J. High Energy Phys. 2009, 8, 68. [Google Scholar] [CrossRef]
- Dabholkar, A.; Gomes, J.; Murthy, S.; Sen, A. Supersymmetric Index from Black Hole Entropy. J. High Energy Phys. 2011, 1104, 34. [Google Scholar] [CrossRef]
- Joyce, D.; Song, Y. A theory of generalized Donaldson-Thomas invariants. Mem. Am. Math. Soc. 2012, 217. [Google Scholar] [CrossRef]
- Douglas, M.R.; Reinbacher, R.; Yau, S.T. Branes, bundles and attractors: Bogomolov and beyond. arXiv 2006, arXiv:math/0604597. [Google Scholar]
- Alexandrov, S.; Persson, D.; Pioline, B. Fivebrane instantons, topological wave functions and hypermultiplet moduli spaces. J. High Energy Phys. 2011, 1103, 111. [Google Scholar] [CrossRef]
- Bridgeland, T. Stability conditions on triangulated categories. Ann. Math. 2007, 166, 317–345. [Google Scholar] [CrossRef]
- Douglas, M.R.; Fiol, B.; Romelsberger, C. Stability and BPS branes. J. High Energy Phys. 2005, 509, 6. [Google Scholar] [CrossRef]
- Thomas, R.P. A Holomorphic Casson invariant for Calabi-Yau three folds, and bundles on K3 fibrations. J. Diff. Geom. 2000, 54, 367–438. [Google Scholar]
- Pandharipande, R.; Thomas, R.P. Curve counting via stable pairs in the derived category. Invent. Math. 2009, 178, 407–447. [Google Scholar] [CrossRef]
- Kontsevich, M.; Soibelman, Y. Stability structures, motivic Donaldson-Thomas invariants and cluster transformations. arXiv 2008, arXiv:0811.2435. [Google Scholar]
- Ferrara, S.; Kallosh, R.; Strominger, A. N=2 extremal black holes. Phys. Rev. 1995, D52, 5412–5416. [Google Scholar] [CrossRef]
- Bena, I.; Berkooz, M.; de Boer, J.; El-Showk, S.; Van den Bleeken, D. Scaling BPS Solutions and pure-Higgs States. J. High Energy Phys. 2012, 1211, 171. [Google Scholar] [CrossRef]
- Manschot, J. Stability and duality in N=2 supergravity. Commun. Math. Phys. 2010, 299, 651–676. [Google Scholar] [CrossRef]
- de Boer, J.; Denef, F.; El-Showk, S.; Messamah, I.; Van den Bleeken, D. Black hole bound states in AdS3×S2. J. High Energy Phys. 2008, 811, 50. [Google Scholar] [CrossRef]
- Manschot, J. Wall-crossing of D4-branes using flow trees. Adv. Theor. Math. Phys. 2011, 15, 1–42. [Google Scholar] [CrossRef]
- Manschot, J.; Pioline, B.; Sen, A. Wall Crossing from Boltzmann Black Hole Halos. J. High Energy Phys. 2011, 1107, 59. [Google Scholar] [CrossRef]
- Alexandrov, S.; Pioline, B. Attractor flow trees, BPS indices and quivers. Adv. Theor. Math. Phys. 2019, 23, 627–699. [Google Scholar] [CrossRef]
- Bayer, A.; Macrì, E.; Stellari, P. The space of stability conditions on abelian threefolds, and on some Calabi-Yau threefolds. Invent. Math. 2016, 206, 869–933. [Google Scholar] [CrossRef]
- Alexandrov, S.; Pioline, B.; Saueressig, F.; Vandoren, S. D-instantons and twistors. J. High Energy Phys. 2009, 3, 44. [Google Scholar] [CrossRef]
- Alexandrov, S. D-instantons and twistors: Some exact results. J. Phys. 2009, A42, 335402. [Google Scholar] [CrossRef]
- Alexandrov, S.; Saueressig, F. Quantum mirror symmetry and twistors. J. High Energy Phys. 2009, 9, 108. [Google Scholar] [CrossRef]
- Alexandrov, S.; Banerjee, S. Hypermultiplet metric and D-instantons. J. High Energy Phys. 2015, 2, 176. [Google Scholar] [CrossRef]
- Alexandrov, S. Twistor Approach to String Compactifications: A Review. Phys. Rept. 2013, 522, 1–57. [Google Scholar] [CrossRef]
- Alexandrov, S.; Banerjee, S.; Longhi, P. Rigid limit for hypermultiplets and five-dimensional gauge theories. J. High Energy Phys. 2018, 1, 156. [Google Scholar] [CrossRef]
- Robles-Llana, D.; Roček, M.; Saueressig, F.; Theis, U.; Vandoren, S. Nonperturbative corrections to 4D string theory effective actions from SL(2,Z) duality and supersymmetry. Phys. Rev. Lett. 2007, 98, 211602. [Google Scholar] [CrossRef]
- Alexandrov, S.; Banerjee, S. Dualities and fivebrane instantons. J. High Energy Phys. 2014, 1411, 40. [Google Scholar] [CrossRef]
- Alexandrov, S.; Bendriss, K. Hypermultiplet metric and NS5-instantons. J. High Energy Phys. 2024, 1, 140. [Google Scholar] [CrossRef]
- Alexandrov, S.; Pioline, B.; Saueressig, F.; Vandoren, S. Linear perturbations of quaternionic metrics. Commun. Math. Phys. 2010, 296, 353–403. [Google Scholar] [CrossRef]
- Gaiotto, D.; Moore, G.W.; Neitzke, A. Four-dimensional wall-crossing via three-dimensional field theory. Commun. Math. Phys. 2010, 299, 163–224. [Google Scholar] [CrossRef]
- Haydys, A. Hyper-Kähler and quaternionic Kähler manifolds with S1-symmetries. J. Geom. Phys. 2008, 58, 293–306. [Google Scholar] [CrossRef]
- Alexandrov, S.; Persson, D.; Pioline, B. Wall-crossing, Rogers dilogarithm, and the QK/HK correspondence. J. High Energy Phys. 2011, 1112, 27. [Google Scholar] [CrossRef]
- Denef, F.; Greene, B.R.; Raugas, M. Split attractor flows and the spectrum of BPS D-branes on the quintic. J. High Energy Phys. 2001, 5, 12. [Google Scholar] [CrossRef]
- Minahan, J.A.; Nemeschansky, D.; Vafa, C.; Warner, N.P. E strings and N=4 topological Yang-Mills theories. Nucl. Phys. 1998, B527, 581–623. [Google Scholar] [CrossRef]
- Gholampour, A.; Sheshmani, A. Donaldson–Thomas invariants of 2-dimensional sheaves inside threefolds and modular forms. Adv. Math. 2018, 326, 79–107. [Google Scholar] [CrossRef]
- Diaconescu, D.E. Vertical sheaves and Fourier-Mukai transform on elliptic Calabi-Yau threefolds. Commun. Num. Theor. Phys. 2016, 10, 373–431. [Google Scholar] [CrossRef]
- Bouchard, V.; Creutzig, T.; Diaconescu, D.E.; Doran, C.; Quigley, C.; Sheshmani, A. Vertical D4-D2-D0 Bound States on K3 Fibrations and Modularity. Commun. Math. Phys. 2017, 350, 1069–1121. [Google Scholar] [CrossRef]
- Doran, C.; Pioline, B.; Schimannek, T. Enumerative geometry and modularity in two-modulus K3-fibered Calabi-Yau threefolds. arXiv 2024, arXiv:2408.02994. [Google Scholar]
- Klemm, A.; Manschot, J.; Wotschke, T. Quantum geometry of elliptic Calabi-Yau manifolds. Comm. Number Theor. Phys. 2012, 6, 849–917. [Google Scholar] [CrossRef]
- Cota, C.F.; Klemm, A.; Schimannek, T. Modular Amplitudes and Flux-Superpotentials on elliptic Calabi-Yau fourfolds. J. High Energy Phys. 2018, 1, 86. [Google Scholar] [CrossRef]
- Cota, C.F.; Klemm, A.; Schimannek, T. Topological strings on genus one fibered Calabi-Yau 3-folds and string dualities. J. High Energy Phys. 2019, 11, 170. [Google Scholar] [CrossRef]
- Lee, S.J.; Lerche, W.; Lockhart, G.; Weigand, T. Quasi-Jacobi forms, elliptic genera and strings in four dimensions. J. High Energy Phys. 2021, 1, 162. [Google Scholar] [CrossRef]
- Pioline, B.; Schimannek, T. Revisiting the Quantum Geometry of Torus-fibered Calabi-Yau Threefolds. in preparation.
- Douglas, M.R.; Fiol, B.; Romelsberger, C. The Spectrum of BPS branes on a noncompact Calabi-Yau. J. High Energy Phys. 2005, 509, 57. [Google Scholar] [CrossRef]
- Nishinaka, T.; Yamaguchi, S.; Yoshida, Y. Two-dimensional crystal melting and D4-D2-D0 on toric Calabi-Yau singularities. J. High Energy Phys. 2014, 5, 139. [Google Scholar] [CrossRef]
- Banerjee, S.; Longhi, P.; Romo, M. Exponential BPS Graphs and D Brane Counting on Toric Calabi-Yau Threefolds: Part I. Commun. Math. Phys. 2021, 388, 893–945. [Google Scholar] [CrossRef]
- Beaujard, G.; Manschot, J.; Pioline, B. Vafa–Witten Invariants from Exceptional Collections. Commun. Math. Phys. 2021, 385, 101–226. [Google Scholar] [CrossRef]
- Del Monte, F.; Longhi, P. Quiver Symmetries and Wall-Crossing Invariance. Commun. Math. Phys. 2023, 398, 89–132. [Google Scholar] [CrossRef]
- Le Floch, B.; Pioline, B.; Raj, R. BPS Dendroscopy on Local . arXiv 2024, arXiv:2412.07680. [Google Scholar]
- Katz, S.H.; Klemm, A.; Vafa, C. Geometric engineering of quantum field theories. Nucl. Phys. B 1997, 497, 173–195. [Google Scholar] [CrossRef]
- Katz, S.; Mayr, P.; Vafa, C. Mirror symmetry and exact solution of 4-D N=2 gauge theories: 1. Adv. Theor. Math. Phys. 1998, 1, 53–114. [Google Scholar] [CrossRef]
- Alim, M.; Haghighat, B.; Hecht, M.; Klemm, A.; Rauch, M.; Wotschke, T. Wall-crossing holomorphic anomaly and mock modularity of multiple M5-branes. Commun. Math. Phys. 2015, 339, 773–814. [Google Scholar] [CrossRef]
- Gholampour, A.; Sheshmani, A.; Yau, S.T. Localized Donaldson-Thomas theory of surfaces. Am. J. Math. 2020, 142, 405–442. [Google Scholar] [CrossRef]
- Pioline, B.; Raj, R. (LPTHE, Sorbonne Université, Paris, France). Private communication, 2025.
- Gaiotto, D.; Moore, G.W.; Neitzke, A. Framed BPS States. Adv. Theor. Math. Phys. 2013, 17, 241–397. [Google Scholar] [CrossRef]
- Huang, M.; Katz, S.; Klemm, A.; Wang, X. Refined BPS numbers on compact Calabi-Yau 3-folds from Wilson loops. arXiv 2025, arXiv:2503.16270. [Google Scholar]
- Cecotti, S.; Neitzke, A.; Vafa, C. R-Twisting and 4d/2d Correspondences. arXiv 2010, arXiv:1006.3435. [Google Scholar]
- Alexandrov, S.; Bendriss, K. Quantum TBA for refined BPS indices. to appear.
- Barbieri, A.; Bridgeland, T.; Stoppa, J. A Quantized Riemann–Hilbert Problem in Donaldson–Thomas Theory. Int. Math. Res. Not. 2022, 2022, 3417–3456. [Google Scholar] [CrossRef]
- Bridgeland, T.; Strachan, I.A.B. Complex hyperKähler structures defined by Donaldson-Thomas invariants. arXiv 2020, arXiv:2006.13059. [Google Scholar] [CrossRef]
- Alexandrov, S.; Pioline, B. Heavenly metrics, BPS indices and twistors. arXiv 2021, arXiv:2104.10540. [Google Scholar] [CrossRef]
- Chuang, W.Y. Quantum Riemann-Hilbert problems for the resolved conifold. J. Geom. Phys. 2023, 190, 104860. [Google Scholar] [CrossRef]
- Alexandrov, S.; Mariño, M.; Pioline, B. Resurgence of Refined Topological Strings and Dual Partition Functions. SIGMA 2024, 20, 73. [Google Scholar] [CrossRef]
- Bayer, A.; Macrì, E.; Toda, Y. Bridgeland stability conditions on threefolds I: Bogomolov-Gieseker type inequalities. J. Algebr. Geom. 2014, 23, 117–163. [Google Scholar] [CrossRef]
- Toda, Y. Bogomolov–Gieseker-type inequality and counting invariants. J. Topol. 2013, 6, 217–250. [Google Scholar] [CrossRef]
- Feyzbakhsh, S.; Thomas, R.P. Curve counting and S-duality. EPIGA 2023, 7, 11306. [Google Scholar] [CrossRef]
- Feyzbakhsh, S.; Thomas, R.P. Rank r DT theory from rank 0. Duke Math. J. 2024, 173, 2063–2116. [Google Scholar] [CrossRef]
- Feyzbakhsh, S.; Thomas, R.P. Rank r DT theory from rank 1. J. Am. Math. Soc. 2023, 36, 795–826. [Google Scholar] [CrossRef]
- Feyzbakhsh, S. Explicit formulae for rank zero DT invariants and the OSV conjecture. arXiv 2022, arXiv:2203.10617. [Google Scholar]
- Pandharipande, R.; Thomas, R.P. 13/2 ways of counting curves. Lond. Math. Soc. Lect. Note Ser. 2014, 411, 282–333. [Google Scholar] [CrossRef]
- Gopakumar, R.; Vafa, C. M-theory and topological strings. I. arXiv 1998, arXiv:hep-th/9809187. [Google Scholar]
- Gopakumar, R.; Vafa, C. M-theory and topological strings. II. arXiv 1998, arXiv:hep-th/9812127. [Google Scholar]
- Liu, Z.; Ruan, Y. Castelnuovo bound and higher genus Gromov-Witten invariants of quintic 3-folds. arXiv 2022, arXiv:2210.13411. [Google Scholar]
- Toda, Y. Curve counting theories via stable objects I. DT/PT correspondence. J. Am. Math. Soc. 2010, 23, 1119–1157. [Google Scholar] [CrossRef]
- Bridgeland, T. Hall algebras and curve-counting invariants. J. Am. Math. Soc. 2011, 24, 969–998. [Google Scholar] [CrossRef]
- Candelas, P.; Dale, A.M.; Lutken, C.A.; Schimmrigk, R. Complete Intersection Calabi-Yau Manifolds. Nucl. Phys. B 1988, 298, 493. [Google Scholar] [CrossRef]
- One Parameter Calabi-Yau Higher Genus Data. Available online: http://www.th.physik.uni-bonn.de/Groups/Klemm/data.php (accessed on 8 May 2025).
- Labastida, J.M.F.; Lozano, C. The Vafa-Witten theory for gauge group SU(N). Adv. Theor. Math. Phys. 1999, 3, 1201–1225. [Google Scholar] [CrossRef]
- Goettsche, L.; Kool, M. Virtual refinements of the Vafa-Witten formula. Comm. Math. Phys. 2020, 376, 1–49. [Google Scholar] [CrossRef]
- Laarakker, T. Monopole contributions to refined Vafa-Witten invariants. Geom. Topol. 2020, 24, 2781–2828. [Google Scholar] [CrossRef]
- Thomas, R.P. Equivariant K-Theory and Refined Vafa-Witten Invariants. Commun. Math. Phys. 2020, 378, 1451–1500. [Google Scholar] [CrossRef]
- Göttsche, L.; Kool, M. Refined SU(3) Vafa–Witten invariants and modularity. Pure Appl. Math. Quart. 2018, 14, 467–513. [Google Scholar] [CrossRef]
- Göttsche, L.; Kool, M.; Laarakker, T. SU(r) Vafa-Witten invariants, Ramanujan’s continued fractions, and cosmic strings. Michigan Math. J. 2025, 75, 3–63. [Google Scholar] [CrossRef]
- Klyachko, A.A. Moduli of vector bundles and numbers of classes. Funct. Anal. Appl. 1991, 25, 67–68. [Google Scholar] [CrossRef]
- Yoshioka, K. The Betti numbers of the moduli space of stable sheaves of rank 2 on . J. Reine Angew. Math 1994, 453, 193–220. [Google Scholar]
- Dabholkar, A.; Putrov, P.; Witten, E. Duality and Mock Modularity. SciPost Phys. 2020, 9, 072. [Google Scholar] [CrossRef]
- Bringmann, K.; Manschot, J. From sheaves on to a generalization of the Rademacher expansion. Am. J. Math. 2013, 135, 1039–1065. [Google Scholar] [CrossRef]
- Manschot, J. BPS invariants of N = 4 gauge theory on Hirzebruch surfaces. Commun. Num. Theor. Phys. 2012, 6, 497–516. [Google Scholar] [CrossRef]
- Manschot, J. Vafa-Witten Theory and Iterated Integrals of Modular Forms. Commun. Math. Phys. 2019, 371, 787–831. [Google Scholar] [CrossRef]
- Gholampour, A.; Sheshmani, A. Generalized Donaldson-Thomas invariants of 2-dimensional sheaves on local . Adv. Theor. Math. Phys. 2015, 19, 673–699. [Google Scholar] [CrossRef]
- Göttsche, L. The Betti numbers of the Hilbert scheme of points on a smooth projective surface. Math. Ann. 1990, 286, 193–207. [Google Scholar] [CrossRef]
- Yoshioka, K. The Betti numbers of the moduli space of stable sheaves of rank 2 on a ruled surface. Math. Ann. 1995, 302, 519–540. [Google Scholar] [CrossRef]
- Manschot, J. The Betti numbers of the moduli space of stable sheaves of rank 3 on . Lett. Math. Phys. 2011, 98, 65–78. [Google Scholar] [CrossRef]
- Manschot, J. BPS invariants of semi-stable sheaves on rational surfaces. Lett. Math. Phys. 2013, 103, 895–918. [Google Scholar] [CrossRef]
- Manschot, J. Sheaves on and generalized Appell functions. Adv. Theor. Math. Phys. 2017, 21, 655–681. [Google Scholar] [CrossRef]
- Yoshioka, K. The chamber structure of polarizations and the moduli of stable sheaves on a ruled surface. Int. J. Math. 1996, 7, 411–431. [Google Scholar] [CrossRef]
- Göttsche, L. Theta functions and Hodge numbers of moduli spaces of sheaves on rational surfaces. Commun. Math. Phys. 1999, 206, 105–136. [Google Scholar] [CrossRef]
- Li, W.P.; Qin, Z.B. On blowup formulae for the S duality conjecture of Vafa and Witten. Invent. Math. 1999, 136, 451. [Google Scholar] [CrossRef]
- Mozgovoy, S. Invariants of moduli spaces of stable sheaves on ruled surfaces. arXiv 2013, arXiv:1302.4134. [Google Scholar]
- Mitev, V.; Pomoni, E.; Taki, M.; Yagi, F. Fiber-Base Duality and Global Symmetry Enhancement. J. High Energy Phys. 2015, 4, 52. [Google Scholar] [CrossRef]
- Iqbal, A.; Neitzke, A.; Vafa, C. A Mysterious duality. Adv. Theor. Math. Phys. 2002, 5, 769–808. [Google Scholar] [CrossRef]
- Bringmann, K.; Manschot, J.; Rolen, L. Identities for Generalized Appell Functions and the Blow-up Formula. Lett. Math. Phys. 2016, 106, 1379–1395. [Google Scholar] [CrossRef]
- Kiritsis, E. Introduction to nonperturbative string theory. AIP Conf. Proc. 1998, 419, 265–308. [Google Scholar] [CrossRef]
- Kraus, P.; Larsen, F. Partition functions and elliptic genera from supergravity. J. High Energy Phys. 2007, 1, 2. [Google Scholar] [CrossRef]
- Dabholkar, A.; Harvey, J.A. Nonrenormalization of the superstring tension. Phys. Rev. Lett. 1989, 63, 478. [Google Scholar] [CrossRef]
- Dabholkar, A.; Gaiotto, D.; Nampuri, S. Comments on the spectrum of CHL dyons. J. High Energy Phys. 2008, 1, 23. [Google Scholar] [CrossRef]
- Dabholkar, A.; Gomes, J.; Murthy, S. Counting all dyons in N = 4 string theory. J. High Energy Phys. 2011, 5, 59. [Google Scholar] [CrossRef]
- Dabholkar, A.; Guica, M.; Murthy, S.; Nampuri, S. No entropy enigmas for N = 4 dyons. J. High Energy Phys. 2010, 6, 7. [Google Scholar] [CrossRef]
- Shih, D.; Strominger, A.; Yin, X. Recounting Dyons in N = 4 string theory. J. High Energy Phys. 2006, 10, 87. [Google Scholar] [CrossRef]
- Pioline, B. BPS black hole degeneracies and minimal automorphic representations. J. High Energy Phys. 2005, 508, 71. [Google Scholar] [CrossRef]
- Ferrara, S.; Maldacena, J.M. Branes, central charges and U duality invariant BPS conditions. Class. Quant. Grav. 1998, 15, 749–758. [Google Scholar] [CrossRef]
- Obers, N.A.; Pioline, B. U-duality and M-theory. Phys. Rept. 1999, 318, 113–225. [Google Scholar] [CrossRef]
- Bianchi, M.; Ferrara, S.; Kallosh, R. Observations on Arithmetic Invariants and U-Duality Orbits in N = 8 Supergravity. J. High Energy Phys. 2010, 3, 81. [Google Scholar] [CrossRef]
- Bossard, G.; Pioline, B. Exact ∇4R4 couplings and helicity supertraces. J. High Energy Phys. 2017, 1, 50. [Google Scholar] [CrossRef]
- Shih, D.; Strominger, A.; Yin, X. Counting dyons in N = 8 string theory. J. High Energy Phys. 2006, 6, 37. [Google Scholar] [CrossRef]
- Sen, A. N = 8 Dyon Partition Function and Walls of Marginal Stability. J. High Energy Phys. 2008, 7, 118. [Google Scholar] [CrossRef]
- Sen, A. U-duality Invariant Dyon Spectrum in type II on T**6. J. High Energy Phys. 2008, 8, 37. [Google Scholar] [CrossRef]
- Troost, J. The non-compact elliptic genus: Mock or modular. J. High Energy Phys. 2010, 1006, 104. [Google Scholar] [CrossRef]
- Kumar Gupta, R.; Murthy, S.; Nazaroglu, C. Squashed Toric Manifolds and Higher Depth Mock Modular Forms. J. High Energy Phys. 2019, 2, 64. [Google Scholar] [CrossRef]
- Korpas, G.; Manschot, J. Donaldson-Witten theory and indefinite theta functions. J. High Energy Phys. 2017, 11, 83. [Google Scholar] [CrossRef]
- Korpas, G.; Manschot, J.; Moore, G.W.; Nidaiev, I. Mocking the u-plane integral. Res. Math. Sci. 2021, 8, 43. [Google Scholar] [CrossRef]
- Cheng, M.C.N.; Duncan, J.F.R. On Rademacher Sums, the Largest Mathieu Group, and the Holographic Modularity of Moonshine. Commun. Num. Theor. Phys. 2012, 6, 697–758. [Google Scholar] [CrossRef]
- Cheng, M.C.N.; Chun, S.; Ferrari, F.; Gukov, S.; Harrison, S.M. 3d Modularity. J. High Energy Phys. 2019, 10, 10. [Google Scholar] [CrossRef]
- Cheng, M.C.N.; Coman, I.; Passaro, D.; Sgroi, G. Quantum Modular -Invariants. SIGMA 2024, 20, 18. [Google Scholar] [CrossRef]
- Grimm, T.W. Non-Perturbative Corrections and Modularity in N = 1 Type IIB Compactifications. J. High Energy Phys. 2007, 10, 4. [Google Scholar] [CrossRef]
- Casas, G.F.; Ibáñez, L.E. Modular invariant Starobinsky inflation and the Species Scale. J. High Energy Phys. 2025, 4, 41. [Google Scholar] [CrossRef]
- Kallosh, R.; Linde, A. SL(2,) cosmological attractors. JCAP 2025, 4, 045. [Google Scholar] [CrossRef]
- Kudla, S. Theta integrals and generalized error functions. Manuscripta Math. 2018, 155, 303–333. [Google Scholar] [CrossRef]
- Conway, J.; Sloane, M. Sphere Packings, Lattices and Groups; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
5 | 50 | 53 | 69 | 64 | 22 | 26 | ||
3 | 42 | 48 | 66 | 48 | 15 | 17 | ||
2 | 44 | 60 | 84(112) | 64 | 15 | 17 | ||
1 | 34 | 50 | 70(95) | 71 | 11 | 13 | ||
9 | 54 | 29 | 33 | 33 | 20 | 21 | ||
8 | 56 | 50 | 64 | 64 | 28 | 31 | ||
6 | 48 | 20 | 24 | 24 | 14 | 15 | ||
4 | 52 | 63 | 78 | 49 | 17 | 20 | ||
4 | 40 | 26 | 34 | 34 | 14 | 16 | ||
2 | 32 | 14 | 17 | 17 | 7 | 8 | ||
1 | 22 | 18 | 21 | 24 | 6 | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alexandrov, S. Mock Modularity at Work, or Black Holes in a Forest. Entropy 2025, 27, 719. https://doi.org/10.3390/e27070719
Alexandrov S. Mock Modularity at Work, or Black Holes in a Forest. Entropy. 2025; 27(7):719. https://doi.org/10.3390/e27070719
Chicago/Turabian StyleAlexandrov, Sergei. 2025. "Mock Modularity at Work, or Black Holes in a Forest" Entropy 27, no. 7: 719. https://doi.org/10.3390/e27070719
APA StyleAlexandrov, S. (2025). Mock Modularity at Work, or Black Holes in a Forest. Entropy, 27(7), 719. https://doi.org/10.3390/e27070719