Analysis of Outage Probability and Average Bit Error Rate of Parallel-UAV-Based Free-Space Optical Communications
Abstract
:1. Introduction
1.1. Background and Motivation
1.2. Related Works
1.3. Contributions and Organization
- We establish a system model for parallel-UAV-relay-based FSO communication systems. We consider an FSO communication scenario with a source node, M relay nodes, and a destination node. The received signal and signal-to-noise ratio (SNR) are analyzed. We establish an FSO channel model that considers atmospheric loss, atmospheric turbulence, pointing error, and AoA fluctuation.
- We analyze the performance of a system for parallel-UAV-relay-based FSO communication. For the considered system, we obtain tractable closed-form expressions of the OP and average bit error rate (ABER). Our numerical results indicate that the simulation results are in good agreement with the theoretical results, which verifies the correctness of the expressions we derived.
- We analyze the asymptotic performance of the considered system. The theoretical expressions of the asymptotic OP and asymptotic ABER are derived at high optical powers. Through analysis, it is found that the asymptotic OP is restricted by the number of relay nodes, the field of view (FoV) of the receiver, and the standard deviation of direction deviation. However, the asymptotic ABER is only related to the FoV and the standard deviation of the direction deviation, and is independent of the number of relay nodes.
2. System and Channel Models
2.1. System Model
2.2. Channel Model
3. Performance Analysis
3.1. Outage Probability
3.2. Asymptotic Outage Probability
3.3. Average Bit Error Rate
3.4. Asymptotic Average BER
4. Numerical Results
4.1. OP Results
4.2. ABER Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABER | average bit error rate |
AoA | angle of arrival |
AWGN | additive white Gaussian noise |
CDF | cumulative distribution function |
DF | decode-and-forward |
FoV | field of view |
FSO | free-space optical |
OOK | on–off keying |
OP | outage probability |
probability density function | |
RF | radio frequency |
SC | selection combining |
SNR | signal-to-noise ratio |
UAV | unmanned aerial vehicle |
References
- Fayad, A.; Cinkler, T.; Rak, J. Toward 6G optical fronthaul: A survey on enabling technologies and research perspectives. IEEE Commun. Surv. Tutor. 2025, 27, 629–666. [Google Scholar] [CrossRef]
- Elamassie, M.; Uysal, M. Multi-layer airborne FSO systems: Performance analysis and optimization. IEEE Trans. Commun. 2025, 73, 2522–2537. [Google Scholar] [CrossRef]
- Xu, F.; Duo, B.; Xie, Y.; Pan, G.; Yang, Y.; Zhang, L.; Ye, Y.; Bao, T.; Gulliver, T.A.; Wang, Y. Multi-UAV assisted mixed FSO/RF communication network for urgent tasks: Fireness oriented design with DRL. IEEE Trans. Veh. Technol. 2025, 74, 1736–1741. [Google Scholar] [CrossRef]
- Wang, J.-Y.; Wang, J.-B.; Chen, M.; Tang, Y.; Zhang, Y. Outage analysis for relay-aided free-space optical communications over turbulence channels with nonzero boresight pointing errors. IEEE Photonics J. 2014, 6, 1–15. [Google Scholar]
- Zhang, X.; Zhao, S.; Wang, Y.; Wang, X.; Song, X.; Li, X.; Li, J. 3-D trajectory optimization for UAV-assisted hybrid FSO/RF network with moving obstacles. IEEE Trans. Aerosp. Electron. Syst. 2025, 61, 1692–1704. [Google Scholar] [CrossRef]
- Fawaz, W.; Abou-Rjeily, C.; Assi, C. UAV-aided cooperation for FSO communication systems. IEEE Commun. Mag. 2018, 56, 70–75. [Google Scholar] [CrossRef]
- Alzenad, M.; Shakir, M.Z.; Yanikomeroglu, H.; Alouini, M.-S. FSO-based vertical backhaul/fronthaul framework for 5G+ wireless networks. IEEE Commun. Mag. 2018, 56, 218–224. [Google Scholar] [CrossRef]
- Dong, Y.; Hassan, M.Z.; Cheng, J.; Hossain, M.J.; Leung, V.C.M. An edge computing empowered radio access network with UAV mounted FSO fronthaul and backhaul: Key challenges and approaches. IEEE Wirel. Commun. 2018, 25, 154–160. [Google Scholar] [CrossRef]
- Zeng, Y.; Wu, Q.; Zhang, R. Accessing from the sky: A tutorial on UAV communications for 5G and beyond. Proc. IEEE 2019, 107, 2327–2375. [Google Scholar] [CrossRef]
- Farid, A.A.; Hranilovic, S. Outage capacity optimization for free-space optical links with pointing errors. J. Light. Technol. 2017, 25, 1702–1710. [Google Scholar] [CrossRef]
- Safari, M.; Uysal, M. Relay-assisted free-space optical communication. IEEE Wirel. Commun. 2008, 7, 5441–5449. [Google Scholar] [CrossRef]
- Lee, J.H.; Park, K.H.; Ko, Y.C.; Alouini, M.S. Throughput maximization of mixed FSO/RF UAV-aided mobile relaying with a buffer. IEEE Trans. Wirel. Commun. 2021, 20, 683–694. [Google Scholar] [CrossRef]
- Zedini, E.; Soury, H.; Alouini, M.S. Dual-hop FSO transmission systems over Gamma-Gamma turbulence with pointing errors. IEEE Trans. Wirel. Commun. 2017, 16, 784–796. [Google Scholar] [CrossRef]
- Abou-Rjeily, C.; Fawaz, W. Buffer-aided serial relaying for FSO communications: Asymptotic analysis and impact of relay placement. IEEE Trans. Wirel. Commun. 2018, 17, 8299–8313. [Google Scholar] [CrossRef]
- Najafi, M.; Ajam, H.; Jamali, V.; Diamantoulakis, P.D.; Karagiannidis, G.K.; Schober, R. Statistical modeling of FSO fronthaul channel for drone-based networks. In Proceedings of the 2018 IEEE International Conference on Communications (ICC), Kansas City, MO, USA, 20–24 May 2018. [Google Scholar]
- Mai, V.V.; Kim, H. Beam size optimization and adaptation for high-altitude airborne free-space optical communication systems. IEEE Photonics J. 2019, 11, 7902213. [Google Scholar] [CrossRef]
- Huang, S.; Safari, M. Free-space optical communication impaired by angular fluctuations. IEEE Trans. Wirel. Commun. 2017, 16, 7475–7487. [Google Scholar] [CrossRef]
- Dabiri, M.T.; Sadough, S.M.S.; Khalighi, M.A. Channel modeling and parameter optimization for hovering UAV-based free-space optical links. IEEE J. Sel. Areas Commun. 2018, 36, 2104–2113. [Google Scholar] [CrossRef]
- Wang, J.-Y.; Ma, Y.; Lu, R.-R.; Wang, J.-B.; Lin, M.; Cheng, J. Hovering UAV-based FSO communications: Channel modelling, performance analysis, and parameter optimization. IEEE J. Sel. Areas Commun. 2021, 39, 2946–2959. [Google Scholar] [CrossRef]
- Mohd, N.; Ghassemlooy, Z.; Zvanovec, S.; Khalighi, M.A.; Bhatnagar, M.R.; Bohata, J.; Komanec, M. Experimental analysis of a triple-hop relay-assisted FSO system with turbulence. Opt. Switch. Netw. 2019, 33, 194–198. [Google Scholar] [CrossRef]
- Nor, N.A.M.; Komanec, M.; Bohata, J.; Ghassemlooy, Z.; Bhatnagar, M.R.; Zvanovec, S. Experimental all-optical relay-assisted FSO link with regeneration and forward scheme for ultra-short pulse transmission. Opt. Exp. 2019, 27, 22127–22137. [Google Scholar] [CrossRef]
- Dabiri, M.T.; Sadough, S.N.S. Optimal placement of UAV-assisted free-space optical communication systems with DF relaying. IEEE Commun. Lett. 2020, 24, 155–158. [Google Scholar] [CrossRef]
- Lee, J.H.; Park, K.H.; Alouini, M.S.; Ko, Y.C. On the Throughput of Mixed FSO/RF UAV-Enabled Mobile Relaying Systems with a Buffer Constraint. In Proceedings of the ICC 2019—2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019. [Google Scholar]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products, 7th ed.; Academic: New York, NY, USA, 2007. [Google Scholar]
- Andrews, L.C.; Phillips, R.L.; Hopen, C.Y.; Al-Habash, M.A. Theory of optical scintillation. J. Opt. Soc. Amer. A 1999, 16, 1417–1429. [Google Scholar] [CrossRef]
- Pham, T.V.; Thang, T.C.; Pham, A.T. Average achievable rate of spatial diversity MIMO-FSO over correlated Gamma-Gamma fading channels. IEEE/OSA J. Opt. Commun. Netw. 2018, 10, 662–674. [Google Scholar] [CrossRef]
- Wang, J.-Y.; Liu, C.; Wang, J.-B.; Wu, Y.; Lin, M. Physical-layer security for indoor visible light communications: Secrecy capacity analysis. IEEE Trans. Commun. 2018, 66, 6423–6436. [Google Scholar] [CrossRef]
- Abou-Rjeily, C.; Noun, Z. Impact of inter-relay co-operation on the performance of FSO systems with any number of relays. IEEE Trans. Wirel. Commun. 2016, 15, 3796–3809. [Google Scholar] [CrossRef]
- Sandalidis, H.G.; Tsiftsis, T.A.; Karagiannidis, G.K.; Uysal, M. BER performance of FSO links over strong atmospheric turbulence channels with pointing errors. IEEE Commun. Lett. 2008, 12, 44–46. [Google Scholar] [CrossRef]
- Wang, J.-B.; Sheng, M.; Song, X.-Y.; Jiao, Y.; Chen, M. Comments on ‘BER performance of FSO links over strong atmospheric turbulence channels with pointing errors’. IEEE Commun. Lett. 2012, 16, 22–23. [Google Scholar] [CrossRef]
Parameters | Symbols | Values |
---|---|---|
Wavelength | 1550 nm | |
Detector radius | a | 0.025 m |
Refractive index structure coefficient | ||
Standard deviation of UAV position deviation | 0.1 m | |
Photoelectric conversion efficiency | T | 0.9 |
Standard deviation of ground position | 0.1 m | |
Atmospheric attenuation coefficient | ||
Standard deviation of direction deviation | 1.2 mrad | |
Noise variance at | ||
SNR threshold | 10 dB | |
Noise variance at D | ||
Beam waist radius at distance | ||
Receiver FoV | 5 mrad | |
Receiver sensitivity | −30 dBm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, S.-H.; Wang, J.-Y.; Hua, X. Analysis of Outage Probability and Average Bit Error Rate of Parallel-UAV-Based Free-Space Optical Communications. Entropy 2025, 27, 650. https://doi.org/10.3390/e27060650
Lin S-H, Wang J-Y, Hua X. Analysis of Outage Probability and Average Bit Error Rate of Parallel-UAV-Based Free-Space Optical Communications. Entropy. 2025; 27(6):650. https://doi.org/10.3390/e27060650
Chicago/Turabian StyleLin, Sheng-Hong, Jin-Yuan Wang, and Xinyi Hua. 2025. "Analysis of Outage Probability and Average Bit Error Rate of Parallel-UAV-Based Free-Space Optical Communications" Entropy 27, no. 6: 650. https://doi.org/10.3390/e27060650
APA StyleLin, S.-H., Wang, J.-Y., & Hua, X. (2025). Analysis of Outage Probability and Average Bit Error Rate of Parallel-UAV-Based Free-Space Optical Communications. Entropy, 27(6), 650. https://doi.org/10.3390/e27060650