Kinetic Monte Carlo Modeling of the Spontaneous Deposition of Platinum on Au(111) Surfaces
Abstract
1. Introduction
2. Model and Simulation Technique
2.1. General Model
2.2. Kinetic Monte Carlo Method
2.3. Energy Calculation
2.4. Diffusion Rate Calculations
- The activation energy in the absence of any neighbors was assumed to be eV. This corresponds to the value obtained from the EAM calculation for the motion of a single atom between two neighboring adsorption sites on a surface in the absence of any neighbors.
- The vibrational frequency of the atom at the starting site in the absence of any neighbors was s−1, obtained from the same EAM calculations. The assumption here was that changes in due to the presence of neighboring atoms are negligible compared with changes in the activation energy. So, we considered the same vibrational frequency for all possible configurations.
- The fastest diffusion process was assumed to be the diffusion from a site without neighbors to a site surrounded by 4 atoms. The activation energy for this process was set to zero.
- Two types of contributions to the activation energy were assumed to arise when the neighboring sites of the initial site are occupied, say and . These were obtained from EAM calculations, yielding eV/atom and eV/atom.
2.5. Deposition Rates
3. Results
3.1. Diffusion Rates
3.2. Deposition on
3.2.1. Time Evolution
3.2.2. Average Values in Final States
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MC | Monte Carlo |
MD | Molecular Dynamics |
NPs | Nanoparticles |
STM | Scanning Tunneling Microscope |
KMC | Kinetic Monte Carlo |
GCMC | Grand Canonical Monte Carlo |
UPD | Underpotential Deposition |
OPD | Overpotential Deposition |
ED | Electrochemical deposition |
SD | Spontaneous Deposition |
GR | Galvanic Replacement |
SLRR | Surface-Limited Redox Replacement |
EAM | Embedded-Atom Method |
DFT | Density Functional Theory |
fcc | face-centered cubic |
hcp | hexagonal close-packed |
References
- Budevski, E.; Staikov, G.; Lorenz, W.J. Electrochemical Phase Formation and Growth; VCH: Weinheim, German, 1996. [Google Scholar]
- Staikov, G.; Lorenz, W.J.; Budevski, E. Imaging of Surfaces and Interfaces—Frontiers of Electrochemistry; Ross, P., Lipkowski, J., Eds.; Wiley-VCH: New York, NY, USA, 1999; Volume 5. [Google Scholar]
- Oviedo, O.A.; Reinaudi, L.; Garcia, S.; Leiva, E.P.M. Underpotential Deposition, From Fundamentals and Theory to Applications at the Nanoscale; Serie Monographs in Electrochemistry; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Brankovic, S. Electrocatalysis: Novel Synthetic Methods in Electrocatalysis: Novel Synthetic Methods; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Kowal, A.; Li, M.; Shao, M.; Sasaki, K.; Vukmirovic, M.B.; Zhang, J.; Marinkovic, N.S.; Liu, P.; Frenkel, A.I.; Adzic, R.R. Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2. Nat. Mater. 2009, 8, 325–330. [Google Scholar] [CrossRef]
- Adzic, R.; Zhang, J.; Sasaki, K.; Vukmirovic, M.B.; Shao, M.; Wang, J.X.; Nilekar, A.U.; Mavrikakis, M.; Valerio, J.A.; Uribe, F. Platinum monolayer fuel cell electrocatalysts. Top. Catal. 2007, 46, 249. [Google Scholar] [CrossRef]
- Sasaki, K.; Wang, J.X.; Naohara, H.; Marinkovic, N.; More, K.; Inada, H.; Adzic, R.R. Recent advances in platinum monolayer electrocatalysts for oxygen reduction reaction: Scale-up synthesis, structure and activity of Pt shells on Pd cores. Electrochim. Acta 2010, 55, 2645. [Google Scholar] [CrossRef]
- Gokcen, D.; Yuan, Q.; Brankovic, S.R. Nucleation of Pt monolayers deposited via surface limited redox replacement reaction. J. Electrochem. Soc. 2014, 161, D3051–D3056. [Google Scholar] [CrossRef]
- Gokcen, D.; Bae, S.E.; Mohammedy, P.; Liu, P.; Brankovic, S.R. Size effects in monolayer catalysis-model study: Pt submonolayers on Au(111). Electrocatalysis 2012, 3, 203. [Google Scholar]
- Waibel, H.-F.; Kleinert, M.; Kibler, L.A.; Kolb, D.M. Initial stages of Pt deposition on Au(111) and Au(100). Electrochim. Acta 2002, 47, 1461–1467. [Google Scholar] [CrossRef]
- Venables, J.A.; Spiller, G.D.T.; Hanbücken, M. Nucleation and growth of thin films. Rep. Prog. Phys. 1984, 47, 399–459. [Google Scholar] [CrossRef]
- Bakos, I.; Szabó, S.; Pajkossy, T. Deposition of platinum monolayers on gold. J. Solid State Electrochem. 2011, 15, 2453–2459. [Google Scholar] [CrossRef]
- Brankovic, S.R.; Breen, J.M.; Adžic, R.R. Pt submonolayers on metal nanoparticles-novel electrocatalysts for H2 oxidation and O2 reduction. Surf. Sci. 2001, 479, L363–L368. [Google Scholar] [CrossRef]
- Uosaki, K.; Ye, S.; Naohara, H.; Oda, Y.; Haba, T.; Kondo, T. Electrochemical epitaxial growth of a Pt(111) phase on an Au(111) electrode. J. Phys. Chem. B 1997, 101, 7566–7572. [Google Scholar] [CrossRef]
- Karali, T.; Ölmez, S.; Yener, G. Study of spontaneous deposition of 210Po on various metals and application for activity assessment in cigarette smoke. Appl. Radiat. Isot. 1996, 47, 409–411. [Google Scholar] [CrossRef]
- Strbac, S.; Petrovic, S.; Vasilic, R.; Kovacc, J.; Zalar, A.; Rakocevic, Z. Carbon monoxide oxidation on Au(111) surface decorated by spontaneously deposited Pt. Electrochim. Acta 2007, 53, 998–1005. [Google Scholar] [CrossRef]
- Kim, J.; Jung, C.; Rhee, C.K.; Lim, T.-H. Electrocatalytic oxidation of formic acid and methanol on Pt deposits on Au(111). Langmuir 2007, 23, 10831–10836. [Google Scholar] [CrossRef]
- Gokcen, D.; Bae, S.-E.; Brankovic, S.R. Stoichiometry of Pt submonolayer deposition via surface-limited redox replacement reaction. J. Electrochem. Soc. 2010, 157, D582–D587. [Google Scholar] [CrossRef]
- Gokcen, D.; Bae, S.-E.; Brankovic, S.R. Reaction kinetics of metal deposition via surface limited red-ox replacement of underpotentially deposited metal monolayers. Electrochim. Acta 2011, 56, 5545–5553. [Google Scholar] [CrossRef]
- Nagahara, Y.; Hara, M.; Yoshimoto, S.; Inukai, J.; Yau, S.L.; Itaya, K. In situ scanning tunneling microscopy examination of molecular adlayers of haloplatinate complexes and electrochemically produced platinum nanoparticles on Au(111). J. Phys. Chem. B 2004, 108, 3224–3230. [Google Scholar] [CrossRef]
- Brankovic, S.R.; Marinkovic, N.S.; Wang, J.X.; Adzic, R.R. Electrosorption and catalytic properties of bare and Pt modified single crystal and nanostructured Ru surfaces. J. Electroanal. Chem. 2002, 524–525, 231–241. [Google Scholar] [CrossRef]
- Nutariya, J.; Fayette, M.; Dimitrov, N.; Vasiljevic, N. Growth of Pt by surface limited redox replacement of underpotentially deposited hydrogen. Electrochim. Acta 2013, 112, 813–823. [Google Scholar] [CrossRef]
- Patra, S.; Das, J.; Yang, H. Selective deposition of Pt on Au nanoparticles using hydrogen presorbed into Au nanoparticles during NaBH4 treatment. Electrochim. Acta 2009, 54, 3441–3445. [Google Scholar] [CrossRef]
- Dai, Y.; Chen, S. Oxygen reduction electrocatalyst of Pt on Au nanoparticles through spontaneous deposition. Appl. Mater. Interfaces 2015, 7, 823–829. [Google Scholar] [CrossRef]
- Kim, S.; Jung, C.; Kim, J.; Rhee, C.K.; Choi, S.-M.; Lim, T.-M. Modification of Au nanoparticles dispersed on carbon support using spontaneous deposition of Pt toward formic acid oxidation. Langmuir 2010, 26, 4497–4505. [Google Scholar] [CrossRef]
- Zheng, F.; Wong, W.T.; Yung, K.F. Facile design of Au@Pt core-shell nanostructures: Formation of Pt submonolayers with tunable coverage and their applications in electrocatalysis. Nano Res. 2014, 7, 410–417. [Google Scholar] [CrossRef]
- Zhang, J.; Sung, Y.; Rikvold, P.A.; Wieckowski, A. Underpotential deposition of Cu on Au(111) in sulfate-containing electrolytes: A theoretical and experimental study. J. Chem. Phys. 1996, 104, 5696. [Google Scholar] [CrossRef]
- Del Pópolo, M.G.; Leiva, E.P.M. Embedded atom method study of Cu deposition on Ag(111). J. Electroanal. Chem. 1997, 440, 271. [Google Scholar]
- Oviedo, O.A.; Rojas, M.I.; Leiva, E.P.M. Off lattice Monte-Carlo simulations of low-dimensional surface defects and metal deposits on Pt(111). Electrochem. Commun. 2005, 7, 472. [Google Scholar] [CrossRef]
- Oviedo, O.A.; Mayer, C.E.; Staikov, G.; Leiva, E.P.M.; Lorenz, W.J. Low-dimensional metallic nanostructures and their electrochemical relevance: Energetics and phenomenological approach. Surf. Sci. 2006, 600, 4475–4483. [Google Scholar] [CrossRef]
- Giménez, M.C.; del Pópolo, M.G.; Leiva, E.P.M. Monte Carlo simulation for the formation and growth of low dimensionality phases during underpotential deposition of Ag on Au(100). Electrochim. Acta 1999, 45, 699–712. [Google Scholar] [CrossRef]
- Giménez, M.C.; Leiva, E.P.M. Comparative Monte Carlo study of monolayer growth in a heteroepitaxial system in the presence of surface defects. Langmuir 2003, 19, 10538–10549. [Google Scholar] [CrossRef]
- Giménez, M.C.; Pópolo, M.G.D.; Leiva, E.P.M.; García, S.G.; Salinas, D.R.; Mayer, C.E.; Lorenz, W.J. Theoretical Considerations of electrochemical phase formation for an ideal Frank-van der Merwe system: Ag on Au(111) and Au(100). J. Electrochem. Soc. 2002, 149, E109. [Google Scholar] [CrossRef]
- Giménez, M.C.; del Pópolo, M.G.; Leiva, E.P.M. Kinetic Monte Carlo Study of Electrochemical Growth in a Heteroepitaxial System. Langmuir 2002, 18, 9087–9094. [Google Scholar] [CrossRef]
- Brown, G.; Rikvold, P.A.; Novotny, M.A.; Wieckowski, A. Simulated dynamics of underpotential deposition of Cu with sulfate on Au(111). J. Electrochem. Soc. 1999, 146, 1035–1040. [Google Scholar] [CrossRef]
- Liu, J.; Liu, C.; Conway, P.P. Kinetic Monte Carlo simulation of electrodeposition of polycrystalline Cu. Electrochem. Commun. 2009, 11, 2207–2211. [Google Scholar] [CrossRef]
- Frank, S.; Rikvold, P.A. Kinetic Monte Carlo simulations of electrodeposition: Crossover from continuous to instantaneous homogeneous nucleation within Avrami’s law. Surf. Sci. 2006, 600, 2470–2487. [Google Scholar] [CrossRef]
- Drews, T.O.; Braatz, R.D.; Alkire, R.C. Monte Carlo simulation of kinetically limited electrodeposition on a surface with metal seed clusters. Phys. Chem. 2007, 221, 1287–1305. [Google Scholar] [CrossRef]
- Treeratanaphitak, T.; Pritzker, M.D.; Abukhdeir, N.M. Kinetic Monte Carlo simulation of electrodeposition using the embedded-atom method. Electrochim. Acta 2014, 121, 407. [Google Scholar] [CrossRef]
- Treeratanaphitak, T.; Pritzker, M.D.; Abukhdeir, N.M. Atomistic kinetic Monte Carlo simulations of polycrystalline copper electrodeposition. Electrochem. Commun. 2014, 46, 140. [Google Scholar] [CrossRef]
- Alonso, C.; Salvarezza, R.C.; Vara, J.M.; Arvia, A.J.; Vazquez, L.; Bartolome, A.; Baro, A.M. The Evaluation of Surface Diffusion Coefficients of Gold and Platinum Atoms at Electrochemical Interfaces from Combined STM-SEM Imaging and Electrochemical Techniques. J. Electrochem. Soc. 1990, 137, 2161. [Google Scholar] [CrossRef]
- Gillespie, D.T. A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions. J. Comput. Phys. 1976, 22, 403. [Google Scholar] [CrossRef]
- Fichthorn, K.A.; Weinberg, W.H. Theoretical foundations of dynamical Monte Carlo simulations. J. Chem. Phys. 1989, 90, 2824. [Google Scholar] [CrossRef]
- Kang, H.C.; Weinberg, W.H. Dynamic Monte Carlo with a proper energy barrier: Surface diffusion and two-dimensional domain ordering. J. Chem. Phys. 1991, 95, 1090. [Google Scholar] [CrossRef]
- Rafiee, M.; Bashiri, H. Dynamic Monte Carlo simulations of the reaction mechanism of hydrogen production from formic acid on Ni(100). Appl. Surf. Sci. 2019, 475, 720–728. [Google Scholar] [CrossRef]
- Rafiee, M.; Bashiri, H. Catalytic decomposition of formic acid on Cu(100): Optimization and dynamic Monte Carlo simulation. Catal. Commun. 2020, 137, 105942. [Google Scholar] [CrossRef]
- Foiles, S.M.; Baskes, M.I.; Daw, M.S. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B 1986, 33, 7983. [Google Scholar] [CrossRef]
- El-koraychy, E.; Sbiaai, K.; Mazroui, M.; Boughaleb, Y.; Ferrando, R. Numerical study of hetero-adsorption and diffusion on (100) and (110) surfaces of Cu, Ag and Au. Surf. Sci. 2014, 635, 64–69. [Google Scholar] [CrossRef]
- Wang, C.-R.; Huang, R.-B.; Liu, Z.-Y.; Zheng, L.-S. Lognormal size distributions of elemental clusters. Chem. Phys. Lett. 1994, 227, 103–108. [Google Scholar] [CrossRef]
- de Lamaestre, R.E.; Bernas, H. Significance of lognormal nanocrystal size distributions. Phys. Rev. B 2006, 73, 125317. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
(frequency) | s−1 |
eV | |
eV | |
eV | |
eV |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gimenez, M.C.; Oviedo, O.A.; Leiva, E.P.M. Kinetic Monte Carlo Modeling of the Spontaneous Deposition of Platinum on Au(111) Surfaces. Entropy 2025, 27, 619. https://doi.org/10.3390/e27060619
Gimenez MC, Oviedo OA, Leiva EPM. Kinetic Monte Carlo Modeling of the Spontaneous Deposition of Platinum on Au(111) Surfaces. Entropy. 2025; 27(6):619. https://doi.org/10.3390/e27060619
Chicago/Turabian StyleGimenez, María Cecilia, Oscar A. Oviedo, and Ezequiel P. M. Leiva. 2025. "Kinetic Monte Carlo Modeling of the Spontaneous Deposition of Platinum on Au(111) Surfaces" Entropy 27, no. 6: 619. https://doi.org/10.3390/e27060619
APA StyleGimenez, M. C., Oviedo, O. A., & Leiva, E. P. M. (2025). Kinetic Monte Carlo Modeling of the Spontaneous Deposition of Platinum on Au(111) Surfaces. Entropy, 27(6), 619. https://doi.org/10.3390/e27060619