Artificial Intelligence Models for Predicting Stock Returns Using Fundamental, Technical, and Entropy-Based Strategies: A Semantic-Augmented Hybrid Approach
Abstract
Share and Cite
Cohen, G.; Aiche, A.; Eichel, R. Artificial Intelligence Models for Predicting Stock Returns Using Fundamental, Technical, and Entropy-Based Strategies: A Semantic-Augmented Hybrid Approach. Entropy 2025, 27, 550. https://doi.org/10.3390/e27060550
Cohen G, Aiche A, Eichel R. Artificial Intelligence Models for Predicting Stock Returns Using Fundamental, Technical, and Entropy-Based Strategies: A Semantic-Augmented Hybrid Approach. Entropy. 2025; 27(6):550. https://doi.org/10.3390/e27060550
Chicago/Turabian StyleCohen, Gil, Avishay Aiche, and Ron Eichel. 2025. "Artificial Intelligence Models for Predicting Stock Returns Using Fundamental, Technical, and Entropy-Based Strategies: A Semantic-Augmented Hybrid Approach" Entropy 27, no. 6: 550. https://doi.org/10.3390/e27060550
APA StyleCohen, G., Aiche, A., & Eichel, R. (2025). Artificial Intelligence Models for Predicting Stock Returns Using Fundamental, Technical, and Entropy-Based Strategies: A Semantic-Augmented Hybrid Approach. Entropy, 27(6), 550. https://doi.org/10.3390/e27060550