Characterization of the Performance of an XXZ Three-Spin Quantum Battery
Abstract
:1. Introduction
2. Model of the QB, Charging Schemes and Figures of Merit
2.1. Anisotropic XXZ Spin QB
2.2. Charging Protocols
2.2.1. Static Charging
2.2.2. Harmonic Charging
2.3. Stored Energy and Averaged Charging Power
3. Charging Performance
3.1. Static Charging with Ferromagnetic and Antiferromagnetic Initial State
- : Ferromagnetic ground state.
- : Antiferromagnetic ground state.
3.1.1. Ferromagnetic Ground State ():
3.1.2. Antiferromagnetic Ground State ():
3.1.3. Average Charging Power
3.2. Harmonic Charging with Ferromagnetic and Antiferromagnetic Initial State
3.2.1. Ferromagnetic Ground State ()
3.2.2. Antiferromagnetic Ground State ()
3.2.3. Maximum Average Power
3.3. Joint Evolution Considering QB and Charging Hamiltonians
3.3.1. Static Charging
3.3.2. Harmonic Charging
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
QB | Quantum battery |
QPT | Quantum phase transition |
References
- Campaioli, F.; Pollock, F.A.; Vinjanampathy, S. Quantum batteries. In Thermodynamics in the Quantum Regime; Binder, F., Correa, L.A., Gogolin, C., Anders, J., Adesso, G., Eds.; Springer: Berlin, Germany, 2018; pp. 207–225. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Dutta, A. Quantum thermal machines and batteries. Eur. Phys. J. B 2021, 94, 1–42. [Google Scholar] [CrossRef]
- Quach, J.Q.; Cerullo, G.; Virgili, T. Quantum batteries: The future of energy storage? Joule 2023, 7, 2195–2200. [Google Scholar] [CrossRef]
- Campaioli, F.; Gherardini, S.; Quach, J.Q.; Polini, M.; Andolina, G.M. Colloquium: Quantum batteries. Rev. Mod. Phys. 2024, 96, 031001. [Google Scholar] [CrossRef]
- Jaeger, L. The Second Quantum Revolution; Springer Nature: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Benenti, G.; Casati, G.; Rossini, D.; Strini, G. Principles of Quantum Computation and Information: A Comprehensive Textbook; World Scientific: Singapore, 2018. [Google Scholar] [CrossRef]
- Esposito, M.; Harbola, U.; Mukamel, S. Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems. Rev. Mod. Phys. 2009, 81, 1665–1702. [Google Scholar] [CrossRef]
- Vinjanampathy, S.; Anders, J. Quantum thermodynamics. Contemp. Phys. 2016, 57, 545–579. [Google Scholar] [CrossRef]
- Campisi, M.; Fazio, R. Dissipation, correlation and lags in heat engines. J. Phys. A Math. Theor. 2016, 49, 345002. [Google Scholar] [CrossRef]
- Benenti, G.; Casati, G.; Saito, K.; Whitney, R.S. Fundamental aspects of steady-state conversion of heat to work at the nanoscale. Phys. Rep. 2017, 694, 1–124. [Google Scholar] [CrossRef]
- Potts, P.P. Quantum Thermodynamics. arXiv 2024, arXiv:2406.19206. [Google Scholar]
- de Paula, V.G.; Santana, W.S.; Cruz, C.; Reis, M. Quantum Thermodynamics in Spin Systems: A Review of Cycles and Applications. arXiv 2024, arXiv:2411.12470. [Google Scholar]
- Alicki, R.; Fannes, M. Entanglement boost for extractable work from ensembles of quantum batteries. Phys. Rev. E 2013, 87, 042123. [Google Scholar] [CrossRef]
- Binder, F.C.; Vinjanampathy, S.; Modi, K.; Goold, J. Quantacell: Powerful charging of quantum batteries. New J. Phys. 2015, 17, 075015. [Google Scholar] [CrossRef]
- Campaioli, F.; Pollock, F.A.; Binder, F.C.; Céleri, L.; Goold, J.; Vinjanampathy, S.; Modi, K. Enhancing the Charging Power of Quantum Batteries. Phys. Rev. Lett. 2017, 118, 150601. [Google Scholar] [CrossRef] [PubMed]
- Andolina, G.M.; Farina, D.; Mari, A.; Pellegrini, V.; Giovannetti, V.; Polini, M. Charger-mediated energy transfer in exactly solvable models for quantum batteries. Phys. Rev. B 2018, 98, 205423. [Google Scholar] [CrossRef]
- Julià-Farré, S.; Salamon, T.; Riera, A.; Bera, M.N.; Lewenstein, M. Bounds on the capacity and power of quantum batteries. Phys. Rev. Res. 2020, 2, 023113. [Google Scholar] [CrossRef]
- Rosa, D.; Rossini, D.; Andolina, G.M.; Polini, M.; Carrega, M. Ultra-stable charging of fast-scrambling SYK quantum batteries. J. High Energy Phys. 2020, 2020, 67. [Google Scholar] [CrossRef]
- Rossini, D.; Andolina, G.M.; Rosa, D.; Carrega, M.; Polini, M. Quantum Advantage in the Charging Process of Sachdev-Ye-Kitaev Batteries. Phys. Rev. Lett. 2020, 125, 236402. [Google Scholar] [CrossRef] [PubMed]
- Gyhm, J.-Y.; Šafránek, D.; Rosa, D. Quantum Charging Advantage Cannot Be Extensive Without Global Operations. Phys. Rev. Lett. 2022, 128, 140501. [Google Scholar] [CrossRef]
- Crescente, A.; Ferraro, D.; Carrega, M.; Sassetti, M. Enhancing coherent energy transfer between quantum devices via a mediator. Phys. Rev. Res. 2022, 4, 033216. [Google Scholar] [CrossRef]
- Hu, C.-K.; Qiu, J.; Souza, P.J.P.; Yuan, J.; Zhou, Y.; Zhang, L.; Chu, J.; Pan, X.; Hu, L.; Li, J.; et al. Optimal charging of a superconducting quantum batteries. Quantum Sci. Technol. 2022, 7, 045018. [Google Scholar] [CrossRef]
- Mazzoncini, F.; Cavina, V.; Andolina, G.M.; Erdman, P.A.; Giovannetti, V. Optimal control methods for quantum batteries. Phys. Rev. A 2023, 107, 032218. [Google Scholar] [CrossRef]
- Morrone, D.; Rossi, M.A.C.; Genoni, M.G. Daemonic ergotropy in continuously monitored open quantum batteries. Phys. Rev. Appl. 2023, 20, 044073. [Google Scholar] [CrossRef]
- Gemme, G.; Grossi, M.; Vallecorsa, S.; Sassetti, M.; Ferraro, D. Qutrit quantum battery: Comparing different charging protocols. Phys. Rev. Res. 2024, 6, 023091. [Google Scholar] [CrossRef]
- Razzoli, L.; Gemme, G.; Khomchenko, I.; Sassetti, M.; Ouerdane, H.; Ferraro, D.; Benenti, G. Cyclic solid-state quantum battery: Thermodynamic characterization and quantum hardware simulation. Quantum Sci. Technol. 2025, 10, 015064. [Google Scholar] [CrossRef]
- Cavaliere, F.; Gemme, G.; Benenti, G.; Ferraro, D.; Sassetti, M. Dynamical Blockade of a reservoir for optimal performances of a quantum battery. Commun. Phys. 2025, 8, 76. [Google Scholar] [CrossRef]
- Ferraro, D.; Campisi, M.; Andolina, G.M.; Pellegrini, V.; Polini, M. High-Power Collective Charging of a Solid-State Quantum Battery. Phys. Rev. Lett. 2018, 120, 117702. [Google Scholar] [CrossRef]
- Andolina, G.M.; Keck, M.; Mari, A.; Giovannetti, V.; Polini, M. Quantum versus classical many-body batteries. Phys. Rev. B 2019, 99, 205437. [Google Scholar] [CrossRef]
- Quach, J.Q.; McGhee, K.E.; Ganzer, L.; Rouse, D.M.; Lovett, B.W.; Gauger, E.M.; Keeling, J.; Cerullo, G.; Lidzey, D.G.; Virgili, T. Superabsorption in an organic microcavity: Toward a quantum battery. Sci. Adv. 2022, 8, eabk3160. [Google Scholar] [CrossRef]
- Dou, F.-Q.; Lu, Y.-Q.; Wang, Y.-J.; Sun, J.-A. Extended Dicke quantum battery with interatomic interactions and driving field. Phys. Rev. B 2022, 105, 115405. [Google Scholar] [CrossRef]
- Erdman, P.A.; Andolina, G.M.; Giovannetti, V.; Noé, F. Reinforcement Learning Optimization of the Charging of a Dicke Quantum Battery. Phys. Rev. Lett. 2024, 133, 243602. [Google Scholar] [CrossRef]
- Gyhm, J.-Y.; Fischer, U.R. Beneficial and detrimental entanglement for quantum battery charging. AVS Quantum Sci. 2024, 6, 012001. [Google Scholar] [CrossRef]
- Ahmadi, B.; Mazurek, P.; Horodecki, P.; Barzanjeh, S. Nonreciprocal Quantum Batteries. Phys. Rev. Lett. 2024, 132, 210402. [Google Scholar] [CrossRef]
- Elyasi, S.N.; Rossi, M.A.C.; Genoni, M.G. Experimental simulation of daemonic work extraction in open quantum batteries on a digital quantum computer. Quantum Sci. Tech. 2025, 10, 025017. [Google Scholar] [CrossRef]
- Hadipour, M.; Haseli, S.; Wang, D.; Haddadi, S. Proposed Scheme for a Cavity-Based Quantum Battery. Adv. Quantum Technol. 2024, 7, 2400115. [Google Scholar] [CrossRef]
- Hadipour, M.; Haseli, S.; Dolatkhah, H.; Rashidi, M. Study the charging process of moving quantum batteries inside cavity. Sci. Rep. 2023, 13, 10672. [Google Scholar] [CrossRef] [PubMed]
- Le, T.P.; Levinsen, J.; Modi, K.; Parish, M.M.; Pollock, F.A. Spin-chain model of a many-body quantum battery. Phys. Rev. A 2018, 97, 022106. [Google Scholar] [CrossRef]
- Verma, D.; Indrajith, V.S.; Sankaranarayanan, R. Dynamics of Heisenberg XYZ two-spin quantum battery. Phys. A 2025, 659, 130352. [Google Scholar] [CrossRef]
- Yang, H.-Y.; Zhang, K.; Wang, X.-H.; Shi, H.-L. Optimal energy storage and collective charging speedup in the central-spin quantum battery. Phys. Rev. B 2025, 111, 085410. [Google Scholar] [CrossRef]
- Ali, A.; Elghaayda, S.; Al-Kuwari, S.; Hussain, M.I.; Rahim, M.T.; Kuniyil, H.; Seida, C.; El Allati, A.; Mansour, M.; Haddadi, S. Kitaev Quantum Batteries: Super-Extensive Scaling of Ergotropy in 1D Spin-1/2 XY-Γ(γ) Chain. arXiv 2024, arXiv:2411.14074. [Google Scholar]
- Zhang, X.-L.; Song, X.-K.; Wang, D. Quantum Battery in the Heisenberg Spin Chain Models with Dzyaloshinskii-Moriya Interaction. Adv. Quantum Technol. 2024, 7, 2400114. [Google Scholar] [CrossRef]
- Rahman, S.; Murugesh, S. Effect of DM Interaction in the charging process of a Heisenberg spin chain quantum battery. Phys. Scr. 2024, 100, 015106. [Google Scholar] [CrossRef]
- Ali, A.; Al-Kuwari, S.; Hussain, M.I.; Byrnes, T.; Rahim, M.T.; Quach, J.Q.; Ghominejad, M.; Haddadi, S. Ergotropy and capacity optimization in Heisenberg spin-chain quantum batteries. Phys. Rev. A 2024, 110, 052404. [Google Scholar] [CrossRef]
- Franchini, F. An Introduction to Integrable Techniques for One-Dimensional Quantum Systems; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar] [CrossRef]
- Porta, S.; Cavaliere, F.; Sassetti, M.; Traverso Ziani, N. Topological classification of dynamical quantum phase transitions in the xy chain. Sci. Rep. 2020, 10, 12766. [Google Scholar] [CrossRef] [PubMed]
- Sacco Shaikh, D.; Catalano, A.G.; Cavaliere, F.; Franchini, F.; Sassetti, M.; Traverso Ziani, N. Phase diagram of the topologically frustrated XY chain. Eur. Phys. J. Plus 2024, 139, 1–14. [Google Scholar] [CrossRef]
- Barra, F.; Hovhannisyan, K.V.; Imparato, A. Quantum batteries at the verge of a phase transition. New J. Phys. 2022, 24, 015003. [Google Scholar] [CrossRef]
- Campisi, M.; Fazio, R. The power of a critical heat engine. Nat. Commun. 2016, 7, 11895. [Google Scholar] [CrossRef]
- Chand, S.; Biswas, A. Critical-point behavior of a measurement-based quantum heat engine. Phys. Rev. E 2018, 98, 052147. [Google Scholar] [CrossRef]
- Caravelli, F.; Yan, B.; García-Pintos, L.P.; Hamma, A. Energy storage and coherence in closed and open quantum batteries. Quantum 2021, 5, 505. [Google Scholar] [CrossRef]
- Grazi, R.; Sacco Shaikh, D.; Sassetti, M.; Traverso Ziani, N.; Ferraro, D. Controlling Energy Storage Crossing Quantum Phase Transitions in an Integrable Spin Quantum Battery. Phys. Rev. Lett. 2024, 133, 197001. [Google Scholar] [CrossRef]
- Grazi, R.; Cavaliere, F.; Traverso Ziani, N.; Ferraro, D. Charging a Dimerized Quantum XY Chain. Symmetry 2025, 17, 220. [Google Scholar] [CrossRef]
- Grazi, R.; Cavaliere, F.; Sassetti, M.; Ferraro, D.; Traverso Ziani, N. Charging Free Fermion Quantum Batteries. Chaos Solitons Fractals 2025, 196, 116383. [Google Scholar] [CrossRef]
- Catalano, A.G.; Giampaolo, S.M.; Morsch, O.; Giovannetti, V.; Franchini, F. Frustrating Quantum Batteries. Phys. Rev. X Quantum 2024, 5, 030319. [Google Scholar] [CrossRef]
- Jafari, R.; Langari, A. Three-qubits ground state and thermal entanglement of anisotropic Heisenberg (XXZ) and ising models with Dzyaloshinskii-Moriya interaction. Int. J. Quantum Inf. 2011, 9, 1057–1079. [Google Scholar] [CrossRef]
- Yong, Z.; Gui-Lu, L. Ground-State and Thermal Entanglement in Three-Spin Heisenberg-XXZ Chain with Three-Spin Interaction. Commun. Theor. Phys. 2007, 48, 249. [Google Scholar] [CrossRef]
- Ali, A.; Elghaayda, S.; Al-Kuwari, S.; Hussain, M.I.; Rahim, M.T.; Kuniyil, H.; Byrnes, T.; Quach, J.Q.; Mansour, M.; Haddadi, S. Magnetic Dipolar Quantum Battery with Spin-Orbit Coupling. arXiv 2024, arXiv:2409.05000. [Google Scholar] [CrossRef]
- Yan, Y.; Lü, Z.; Zheng, H. Bloch-Siegert shift of the Rabi model. Phys. Rev. A 2015, 91, 053834. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, T.; Xiao, C.; Pan, K.; Jin, G.; Yu, Y.; Chen, A. Quantum Battery Based on Hybrid Field Charging. Entropy 2022, 24, 1821. [Google Scholar] [CrossRef]
- Ghosh, S.; Chanda, T.; Sen(De), A. Enhancement in the performance of a quantum battery by ordered and disordered interactions. Phys. Rev. A 2020, 101, 032115. [Google Scholar] [CrossRef]
- Mondal, S.; Bhattacharjee, S. Periodically driven many-body quantum battery. Phys. Rev. E 2022, 105, 044125. [Google Scholar] [CrossRef]
- Huang, X.; Wang, K.; Xiao, L.; Gao, L.; Lin, H.; Xue, P. Demonstration of the charging progress of quantum batteries. Phys. Rev. A 2023, 107, L030201. [Google Scholar] [CrossRef]
- Zhang, Y.-Y.; Yang, T.-R.; Fu, L.; Wang, X. Powerful harmonic charging in a quantum battery. Phys. Rev. E 2019, 99, 052106. [Google Scholar] [CrossRef]
- Wen, J.; Wen, Z.; Peng, P.; Li, G.-Q. Dicke-Ising quantum battery of an ion chain driven by a mechanical oscillator. arXiv 2025, arXiv:2502.08065. [Google Scholar] [CrossRef]
- Elghaayda, S.; Ali, A.; Al-Kuwari, S.; Czerwinski, A.; Mansour, M.; Haddadi, S. Performance of a Superconducting Quantum Battery. Adv. Quantum Technol. 2025, 2400651. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chand, S.; Ferraro, D.; Traverso Ziani, N. Characterization of the Performance of an XXZ Three-Spin Quantum Battery. Entropy 2025, 27, 511. https://doi.org/10.3390/e27050511
Chand S, Ferraro D, Traverso Ziani N. Characterization of the Performance of an XXZ Three-Spin Quantum Battery. Entropy. 2025; 27(5):511. https://doi.org/10.3390/e27050511
Chicago/Turabian StyleChand, Suman, Dario Ferraro, and Niccolò Traverso Ziani. 2025. "Characterization of the Performance of an XXZ Three-Spin Quantum Battery" Entropy 27, no. 5: 511. https://doi.org/10.3390/e27050511
APA StyleChand, S., Ferraro, D., & Traverso Ziani, N. (2025). Characterization of the Performance of an XXZ Three-Spin Quantum Battery. Entropy, 27(5), 511. https://doi.org/10.3390/e27050511