An Event–Link Network Model Based on Representation in P-Space
Abstract
:1. Introduction
2. Data and Model
2.1. Data
Properties | Marine | Beijing | Shanghai | Guangzhou | Shenzhen | Chongqing |
---|---|---|---|---|---|---|
2284 | 1817 | 1449 | 1522 | 1036 | 915 | |
N | 632 | 12,579 | 13,133 | 8416 | 5691 | 4505 |
6.98 | 25.77 | 21.75 | 23.84 | 30.25 | 17.19 | |
22 | 95 | 85 | 74 | 102 | 60 | |
0.0395 | 0.268 | 0.416 | 0.232 | 0.182 | 0.286 |
2.2. Model
3. Simulation Results and Analysis
3.1. Comparison with Other Models
3.2. Topological Properties
Topological Quantities | N | Formula |
---|---|---|
C | Clustering coefficient | |
D | Diameter of the network | |
Average shortest-path distance | ||
r | Assortativity and disassortativity | |
Average trapping time |
Topological Quantities | N | C | D | r | |||
---|---|---|---|---|---|---|---|
WMTN | 632 | 33.72 | 0.7099 | 5 | 2.426 | −0.1201 | 1357 |
ER | 632 | 33.72 | 0.0538 | 3 | 2.102 | 0.0002 | 334.4 |
Configuration | 632 | 33.72 | 0.3510 | 5 | 2.239 | −0.1925 | 1275 |
WS | 632 | 34 | 0.3902 | 3 | 2.392 | −0.0041 | 338 |
BA | 632 | 33.52 | 0.1324 | 3 | 2.113 | −0.0.017 | 427 |
EL | 632 | 34.62 | 0.7399 | 5 | 2.279 | −0.1396 | 1326 |
Topological Quantities | N | C | D | r | |||
---|---|---|---|---|---|---|---|
Beijing PTB | 12,557 | 87.31 | 0.7488 | 7 | 3.606 | 0.06447 | 17,628 |
ER | 12,557 | 87.31 | 0.00692 | 3 | 2.534 | 0.00271 | 6424 |
Configuration | 12,557 | 87.31 | 0.02939 | 5 | 2.524 | −0.02007 | 16,300 |
WS | 12,557 | 88 | 0.3832 | 4 | 2.782 | 0.000306 | 6467 |
BA | 12,557 | 87.84 | 0.0291 | 3 | 2.422 | 0.00197 | 8475 |
EL | 12,565 | 87.03 | 0.7624 | 5 | 2.521 | −0.01056 | 19,737 |
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ATT | Average trapping time |
BA | Barabási and Albert |
EL | Event–link |
ER | Erdős–Rényi |
PTN | Public transport network |
WMTN | World marine transportation network |
WS | Watts and Strogatz |
References
- Newman, M.E.; Barabási, A.L.E.; Watts, D.J. The Structure and Dynamics of Networks; Princeton University Press: Princeton, NJ, USA, 2006. [Google Scholar]
- Barthélemy, M. Spatial networks. Phys. Rep. 2011, 499, 1–101. [Google Scholar] [CrossRef]
- Albert, R.; Barabási, A.L. Statistical mechanics of complex networks. Rev. Mod. Phys. 2002, 74, 47. [Google Scholar] [CrossRef]
- Barabási, A.L. Network science. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013, 371, 20120375. [Google Scholar] [CrossRef] [PubMed]
- Albert, R.; Jeong, H.; Barabási, A.L. Error and attack tolerance of complex networks. Nature 2000, 406, 378–382. [Google Scholar] [CrossRef]
- Radicchi, F.; Castellano, C.; Cecconi, F.; Loreto, V.; Parisi, D. Defining and identifying communities in networks. Proc. Natl. Acad. Sci. USA 2004, 101, 2658–2663. [Google Scholar] [CrossRef]
- Palla, G.; Derényi, I.; Farkas, I.; Vicsek, T. Uncovering the overlapping community structure of complex networks in nature and society. Nature 2005, 435, 814–818. [Google Scholar] [CrossRef]
- Barrat, A.; Barthelemy, M.; Pastor-Satorras, R.; Vespignani, A. The architecture of complex weighted networks. Proc. Natl. Acad. Sci. USA 2004, 101, 3747–3752. [Google Scholar] [CrossRef]
- Guimera, R.; Nunes Amaral, L.A. Functional cartography of complex metabolic networks. Nature 2005, 433, 895–900. [Google Scholar] [CrossRef]
- Stam, C.J.; Reijneveld, J.C. Graph theoretical analysis of complex networks in the brain. Nonlinear Biomed. Phys. 2007, 1, 3. [Google Scholar] [CrossRef]
- Pastor-Satorras, R.; Vespignani, A. Epidemic spreading in scale-free networks. Phys. Rev. Lett. 2001, 86, 3200. [Google Scholar] [CrossRef]
- Jeong, H.; Tombor, B.; Albert, R.; Oltvai, Z.N.; Barabási, A.L. The large-scale organization of metabolic networks. Nature 2000, 407, 651–654. [Google Scholar] [CrossRef] [PubMed]
- Broder, A.; Kumar, R.; Maghoul, F.; Raghavan, P.; Rajagopalan, S.; Stata, R.; Tomkins, A.; Wiener, J. Graph structure in the web. Comput. Netw. 2000, 33, 309–320. [Google Scholar] [CrossRef]
- Zhang, W.; Deng, W.; Li, W. Statistical properties of links of network: A survey on the shipping lines of Worldwide Marine Transport Network. Phys. A Stat. Mech. Appl. 2018, 502, 218–227. [Google Scholar] [CrossRef]
- Sienkiewicz, J.; Hołyst, J.A. Statistical analysis of 22 public transport networks in Poland. Phys. Rev. E 2005, 72, 046127. [Google Scholar] [CrossRef]
- Sen, P.; Dasgupta, S.; Chatterjee, A.; Sreeram, P.; Mukherjee, G.; Manna, S. Small-world properties of the Indian railway network. Phys. Rev. E 2003, 67, 036106. [Google Scholar] [CrossRef]
- Biamonte, J.; Faccin, M.; De Domenico, M. Complex networks from classical to quantum. Commun. Phys. 2019, 2, 53. [Google Scholar] [CrossRef]
- Faccin, M.; Migdał, P.; Johnson, T.H.; Bergholm, V.; Biamonte, J.D. Community detection in quantum complex networks. Phys. Rev. X 2014, 4, 041012. [Google Scholar] [CrossRef]
- Song, C.; Havlin, S.; Makse, H.A. Self-similarity of complex networks. Nature 2005, 433, 392–395. [Google Scholar] [CrossRef]
- Barthélemy, M.; Barrat, A.; Pastor-Satorras, R.; Vespignani, A. Characterization and modeling of weighted networks. Phys. A Stat. Mech. Appl. 2005, 346, 34–43. [Google Scholar] [CrossRef]
- Aggarwal, C.; Subbian, K. Evolutionary network analysis: A survey. ACM Comput. Surv. (CSUR) 2014, 47, 1–36. [Google Scholar] [CrossRef]
- Yu, W.; Cao, J.; Chen, G.; Lu, J.; Han, J.; Wei, W. Local synchronization of a complex network model. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 2008, 39, 230–241. [Google Scholar]
- Barabasi, A.L. The origin of bursts and heavy tails in human dynamics. Nature 2005, 435, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Mittal, S.; Chakraborty, T.; Pal, S. Dynamics of node influence in network growth models. Phys. A Stat. Mech. Appl. 2022, 589, 126520. [Google Scholar] [CrossRef]
- Barthelemy, M. Class of models for random hypergraphs. Phys. Rev. E 2022, 106, 064310. [Google Scholar] [CrossRef]
- Yook, S.H.; Jeong, H.; Barabási, A.L. Modeling the Internet’s large-scale topology. Proc. Natl. Acad. Sci. USA 2002, 99, 13382–13386. [Google Scholar] [CrossRef]
- Krapivsky, P.L.; Redner, S.; Leyvraz, F. Connectivity of growing random networks. Phys. Rev. Lett. 2000, 85, 4629. [Google Scholar] [CrossRef]
- Erdős, P.; Rényi, A. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 1960, 5, 17–60. [Google Scholar]
- Watts, D.J.; Strogatz, S.H. Collective dynamics of ‘small-world’networks. Nature 1998, 393, 440–442. [Google Scholar] [CrossRef]
- Barabási, A.L.; Albert, R. Emergence of scaling in random networks. Science 1999, 286, 509–512. [Google Scholar] [CrossRef]
- Dorogovtsev, S.N.; Mendes, J.F. Evolution of networks. Adv. Phys. 2002, 51, 1079–1187. [Google Scholar] [CrossRef]
- Goldstein, M.L.; Morris, S.A.; Yen, G.G. Problems with fitting to the power-law distribution. Eur. Phys. J. B-Condens. Matter Complex Syst. 2004, 41, 255–258. [Google Scholar] [CrossRef]
- Rak, R.; Rak, E. The Fractional Preferential Attachment scale-free network model. Entropy 2020, 22, 509. [Google Scholar] [CrossRef] [PubMed]
- Petit, H.; Doody, R.S.; Pratt, R. Donepezil improves cognition and global function in Alzheimer’s disease: Results from us and multinational phase III clinical trials. Eur. Neuropsychopharmacol. 1998, 158, S274. [Google Scholar] [CrossRef]
- Lu, Z.; Mu, H.P.; Jiao, C.Y. Particle swarm optimization with highly-clustered scale-free neighborhood model. In Proceedings of the 2010 3rd International Conference on Computer Science and Information Technology, IEEE, Chengdu, China, 9–11 July 2010. [Google Scholar]
- Amaral, L.A.N.; Scala, A.; Barthelemy, M.; Stanley, H.E. Classes of small-world networks. Proc. Natl. Acad. Sci. USA 2000, 97, 11149–11152. [Google Scholar] [CrossRef]
- Dorogovtsev, S.N.; Mendes, J.F.F. Scaling behaviour of developing and decaying networks. EPL Europhys. Lett. 2000, 52, 33. [Google Scholar] [CrossRef]
- Dorogovtsev, S.N.; Mendes, J.F.F. Evolution of networks with aging of sites. Phys. Rev. E 2000, 62, 1842. [Google Scholar] [CrossRef]
- Saramäki, J.; Kaski, K. Scale-free networks generated by random walkers. Phys. A Stat. Mech. Appl. 2004, 341, 80–86. [Google Scholar] [CrossRef]
- Holme, P.; Kim, B.J. Growing scale-free networks with tunable clustering. Phys. Rev. E 2002, 65, 026107. [Google Scholar] [CrossRef]
- Liu, S.X.; Ji, X.S.; Liu, C.X.; Guo, H. A complex network evolution model for network growth promoted by information transmission. I confirm. Acta Phys. Sin. 2014, 63, 158902. [Google Scholar]
- Li, J.; Wang, B.H.; Jiang, P.Q.; Zhou, T.; Wang, W.X. Growing complex network model with acceleratingly increasing number of nodes. Acta Phys. Sin. 2006, 55, 4051–4057. [Google Scholar] [CrossRef]
- Kharel, S.R.; Mezei, T.R.; Chung, S.; Erdős, P.L.; Toroczkai, Z. Degree-preserving network growth. Nat. Phys. 2022, 18, 100–106. [Google Scholar] [CrossRef]
- Fruchterman, T.M.; Reingold, E.M. Graph drawing by force-directed placement. Softw. Pract. Exp. 1991, 21, 1129–1164. [Google Scholar] [CrossRef]
- Kamada, T.; Kawai, S. An algorithm for drawing general undirected graphs. Inf. Process. Lett. 1989, 31, 7–15. [Google Scholar] [CrossRef]
- Chatterjee, A.; Manohar, M.; Ramadurai, G. Statistical analysis of bus networks in India. PLoS ONE 2016, 11, e0168478. [Google Scholar] [CrossRef]
- Wang, Y.L.; Zhou, T.; Shi, J.J.; Wang, J.; He, D.R. Empirical analysis of dependence between stations in Chinese railway network. Phys. A Stat. Mech. Appl. 2009, 388, 2949–2955. [Google Scholar] [CrossRef]
- Derrible, S.; Kennedy, C. Network analysis of world subway systems using updated graph theory. Transp. Res. Rec. 2009, 2112, 17–25. [Google Scholar] [CrossRef]
- Seaton, K.A.; Hackett, L.M. Stations, trains and small-world networks. Phys. A Stat. Mech. Appl. 2004, 339, 635–644. [Google Scholar] [CrossRef]
- Kurant, M.; Thiran, P. Extraction and analysis of traffic and topologies of transportation networks. Phys. Rev. E 2006, 74, 036114. [Google Scholar] [CrossRef]
- Feng, S.; Xin, M.; Lv, T.; Hu, B. A novel evolving model of urban rail transit networks based on the local-world theory. Phys. A Stat. Mech. Appl. 2019, 535, 122227. [Google Scholar] [CrossRef]
- Lu, S.; Huang, Y.; Zhao, Z.; Yang, X. Exploring the hierarchical structure of China’s railway network from 2008 to 2017. Sustainability 2018, 10, 3173. [Google Scholar] [CrossRef]
- Wan, Y.; Liu, Y. DASSCAN: A density and adjacency expansion-based spatial structural community detection algorithm for networks. ISPRS Int. J. Geo-Inf. 2018, 7, 159. [Google Scholar] [CrossRef]
- Wang, R.; Tan, J.X.; Wang, X.; Wang, D.J.; Cai, X. Geographic coarse graining analysis of the railway network of China. Phys. A Stat. Mech. Appl. 2008, 387, 5639–5646. [Google Scholar] [CrossRef]
- Cao, W.; Feng, X.; Jia, J.; Zhang, H. Characterizing the structure of the railway network in ChinA A complex weighted network approach. J. Adv. Transp. 2019, 2019, 3928260. [Google Scholar] [CrossRef]
- Xu, X.; Hu, J.; Liu, F. Empirical analysis of the ship-transport network of China. Chaos Interdiscip. J. Nonlinear Sci. 2007, 17, 023129. [Google Scholar] [CrossRef]
- Tang, J.; Li, Z.; Gao, F.; Zong, F. Identifying critical metro stations in multiplex network based on D–S evidence theory. Phys. A Stat. Mech. Appl. 2021, 574, 126018. [Google Scholar] [CrossRef]
- Wang, Y.; Deng, Y.; Ren, F.; Zhu, R.; Wang, P.; Du, T.; Du, Q. Analysing the spatial configuration of urban bus networks based on the geospatial network analysis method. Cities 2020, 96, 102406. [Google Scholar] [CrossRef]
- Shanmukhappa, T.; Ho, I.W.H.; Chi, K.T.; Leung, K.K. Recent development in public transport network analysis from the complex network perspective. IEEE Circuits Syst. Mag. 2019, 19, 39–65. [Google Scholar] [CrossRef]
- Manjalavil, M.M.; Ramadurai, G. Topological properties of bus transit networks considering demand and service utilization weight measures. Phys. A Stat. Mech. Appl. 2020, 555, 124683. [Google Scholar] [CrossRef]
- Carvalho, D.; Barbastefano, R.; Pumar, L. Bus Transport Network Analysis in Rio de Janeiro Based on Topological Models Using Social Networks; OSF: Charlottesville, VA, USA, 2020. [Google Scholar]
- De Bona, A.; Fonseca, K.; Rosa, M.; Lüders, R.; Delgado, M. Analysis of Public Bus Transportation of a Brazilian City Based on the Theory of Complex Networks Using the P-Space. Math. Probl. Eng. 2016, 2016, 3898762. [Google Scholar] [CrossRef]
- Li, R.; Dong, L.; Zhang, J.; Wang, X.; Wang, W.X.; Di, Z.; Stanley, H.E. Simple spatial scaling rules behind complex cities. Nat. Commun. 2017, 8, 1841. [Google Scholar] [CrossRef]
- Newman, M.E. The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. USA 2001, 98, 404–409. [Google Scholar] [CrossRef] [PubMed]
- Ghoshal, G.; Zlatić, V.; Caldarelli, G.; Newman, M.E. Random hypergraphs and their applications. Phys. Rev. E—Stat. Nonlinear Soft Matter Phys. 2009, 79, 066118. [Google Scholar] [CrossRef] [PubMed]
- Battiston, F.; Cencetti, G.; Iacopini, I.; Latora, V.; Lucas, M.; Patania, A.; Young, J.G.; Petri, G. Networks beyond pairwise interactions: Structure and dynamics. Phys. Rep. 2020, 874, 1–92. [Google Scholar]
- Zhang, Z.K.; Liu, C. A hypergraph model of social tagging networks. J. Stat. Mech. Theory Exp. 2010, 2010, P10005. [Google Scholar] [CrossRef]
- Wang, J.W.; Rong, L.L.; Deng, Q.H.; Zhang, J.Y. Evolving hypernetwork model. Eur. Phys. J. B 2010, 77, 493–498. [Google Scholar] [CrossRef]
- Guo, J.L.; Zhu, X.Y.; Suo, Q.; Forrest, J. Non-uniform evolving hypergraphs and weighted evolving hypergraphs. Sci. Rep. 2016, 6, 36648. [Google Scholar] [CrossRef]
- Avin, C.; Lotker, Z.; Nahum, Y.; Peleg, D. Random preferential attachment hypergraph. In Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Vancouver, BC, Canada, 27–30 August 2019; pp. 398–405. [Google Scholar]
- Chen, X. Quantitative Analysis on the Statistical Properties of Historical Personages and Historical Events. Master’s Thesis, Central China Normal University, Wuhan, China, 2020. [Google Scholar]
- Huan, L.I.; Gang, L.U.; Junxia, G. Quantitative evaluation for null models of complex networks. J. Comput. Appl. 2015, 35, 5. [Google Scholar]
- Newman, M.E. Assortative mixing in networks. Phys. Rev. Lett. 2002, 89, 208701. [Google Scholar] [CrossRef]
- Newman, M.E. Mixing patterns in networks. Phys. Rev. E 2003, 67, 026126. [Google Scholar] [CrossRef]
- Capocci, A.; Caldarelli, G.; De Los Rios, P. Quantitative description and modeling of real networks. Phys. Rev. E 2003, 68, 047101. [Google Scholar] [CrossRef]
- Montroll, E.W. Random Walks on Lattices. III. Calculation of First-Passage Times with Application to Exciton Trapping on Photosynthetic Units. J. Math. Phys. 1969, 10, 753–765. [Google Scholar] [CrossRef]
- Lin, Y.; Zhang, Z. Random walks in weighted networks with a perfect trap: An application of Laplacian spectra. Phys. Rev. E 2013, 87, 062140. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.; Shang, F.; Chen, B.; Expert, P.; Lü, L.; Stanley, H.E.; Lambiotte, R.; Evans, T.S.; Li, R. Local dominance unveils clusters in networks. Commun. Phys. 2024, 7, 170. [Google Scholar] [CrossRef]
- Bellingeri, M.; Vincenzi, S. Robustness of empirical food webs with varying consumer’s sensitivities to loss of resources. J. Theor. Biol. 2013, 333, 18–26. [Google Scholar] [CrossRef]
- Ståhl, P.P.; Riikka, P.D.; Zhang, L.; Nordström, M.C.; Kortsch, S. Food web robustness depends on the network type and threshold for extinction. Oikos 2025, e11139. [Google Scholar] [CrossRef]
Topological Quantities | N | C | D | r | |||
---|---|---|---|---|---|---|---|
Shanghai PTN | 13,037 | 57.38 | 0.7772 | 11 | 4.103 | 0.1599 | 19,998 |
EL of Shanghai PTN | 13,039 | 58.82 | 0.7792 | 5 | 2.688 | 0.01723 | 16,717 |
Guangzhou PTN | 8363 | 86.53 | 0.7409 | 7 | 3.470 | 0.2546 | 14,477 |
EL of Guangzhou PTN | 8366 | 87.47 | 0.7490 | 4 | 2.424 | −0.00458 | 12,913 |
Shenzhen PTN | 5671 | 164.0 | 0.6363 | 6 | 2.748 | 0.1757 | 9829 |
EL of Shenzhen PTN | 5693 | 158.2 | 0.7378 | 4 | 2.180 | −0.09621 | 12,043 |
Chongqing PTN | 4479 | 60.96 | 0.7591 | 8 | 3.509 | −0.223 | 8450 |
EL of Chongqing PTN | 4511 | 58.84 | 0.7740 | 5 | 2.479 | −0.02537 | 7354 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Chen, X.; Deng, W. An Event–Link Network Model Based on Representation in P-Space. Entropy 2025, 27, 419. https://doi.org/10.3390/e27040419
Zhang W, Chen X, Deng W. An Event–Link Network Model Based on Representation in P-Space. Entropy. 2025; 27(4):419. https://doi.org/10.3390/e27040419
Chicago/Turabian StyleZhang, Wenjun, Xiangna Chen, and Weibing Deng. 2025. "An Event–Link Network Model Based on Representation in P-Space" Entropy 27, no. 4: 419. https://doi.org/10.3390/e27040419
APA StyleZhang, W., Chen, X., & Deng, W. (2025). An Event–Link Network Model Based on Representation in P-Space. Entropy, 27(4), 419. https://doi.org/10.3390/e27040419