Intrinsic Motivation as Constrained Entropy Maximization
Abstract
:1. Introduction
2. Three Formal Accounts of Intrinsic Motivation
2.1. Empowerment
2.2. Active Inference and Expected Free Energy
2.3. Maximum Occupancy
3. A Unified View of Intrinsic Motivation
3.1. Empowerment and Active Inference
3.2. Constrained Maximum Occupancy
3.3. Model Evidence and the Will to Live
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Domenico, S.I.D.; Ryan, R.M. The Emerging Neuroscience of Intrinsic Motivation: A New Frontier in Self-Determination Research. Front. Hum. Neurosci. 2017, 11, 145. [Google Scholar]
- Ryan, R.M.; Deci, E.L. Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. Am. Psychol. 2000, 55, 68–78. [Google Scholar]
- Oudeyer, P.Y.; Gottlieb, J.; Lopes, M.C. Intrinsic motivation, curiosity, and learning: Theory and applications in educational technologies. Prog. Brain Res. 2016, 229, 257–284. [Google Scholar] [PubMed]
- Klyubin, A.S.; Polani, D.; Nehaniv, C.L. Empowerment: A universal agent-centric measure of control. In Proceedings of the 2005 IEEE Congress on Evolutionary Computation, Edinburgh, UK, 2–5 September 2005; Volume 1, pp. 128–135. [Google Scholar]
- Salge, C.; Glackin, C.; Polani, D. Empowerment—An Introduction. arXiv 2013, arXiv:1310.1863. [Google Scholar]
- Rappaport, J. Terms of empowerment/exemplars of prevention: Toward a theory for community psychology. Am. J. Community Psychol. 1987, 15, 121–148. [Google Scholar]
- Friston, K.J.; FitzGerald, T.H.B.; Rigoli, F.; Schwartenbeck, P.; Pezzulo, G. Active Inference: A Process Theory. Neural Comput. 2017, 29, 1–49. [Google Scholar]
- Friston, K.J.; Rigoli, F.; Ognibene, D.; Mathys, C.D.; FitzGerald, T.H.B.; Pezzulo, G. Active inference and epistemic value. Cogn. Neurosci. 2015, 6, 187–214. [Google Scholar]
- Da Costa, L.; Tenka, S.; Zhao, D.; Sajid, N. Active Inference as a Model of Agency. arXiv 2024, arXiv:2401.12917. [Google Scholar]
- Ramirez-Ruiz, J.; Grytskyy, D.; Mastrogiuseppe, C.; Habib, Y.; Moreno-Bote, R. Complex behavior from intrinsic motivation to occupy future action-state path space. Nat. Commun. 2024, 15, 6368. [Google Scholar] [CrossRef]
- Schmidhuber, J. Adaptive Confidence and Adaptive Curiosity; Technical Report FKI-149-91; TU Munich: München, Germany, 1991; pp. 1–9. [Google Scholar]
- Schmidhuber, J. Formal Theory of Creativity, Fun, and Intrinsic Motivation (1990–2010). IEEE Trans. Auton. Ment. Dev. 2010, 2, 230–247. [Google Scholar]
- Itti, L.; Baldi, P. Bayesian surprise attracts human attention. Vis. Res. 2009, 49, 1295–1306. [Google Scholar] [CrossRef] [PubMed]
- Mazzaglia, P.; Çatal, O.; Verbelen, T.; Dhoedt, B. Curiosity-Driven Exploration via Latent Bayesian Surprise. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtually, 22 February–1 March 2021. [Google Scholar]
- Powers, W.T. Feedback: Beyond Behaviorism. Science 1973, 179, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Barter, J.W.; Yin, H.H. Achieving natural behavior in a robot using neurally inspired hierarchical perceptual control. iScience 2021, 24, 102948. [Google Scholar] [CrossRef]
- Pellis, S.M.; Bell, H.C. Chapter 5 - Unraveling the dynamics of dyadic interactions: Perceptual control in animal contests. In The Interdisciplinary Handbook of Perceptual Control Theory; Mansell, W., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 75–99. [Google Scholar] [CrossRef]
- Mansell, W. The perceptual control model of psychopathology. Curr. Opin. Psychol. 2021, 41, 15–20. [Google Scholar] [CrossRef]
- Moreno-Bote, R.; Ramírez-Ruiz, J. Empowerment, Free Energy Principle and Maximum Occupancy Principle Compared. In Proceedings of the NeurIPS 2023 Workshop: Information-Theoretic Principles in Cognitive Systems, New Orleans, LA, USA, 10–16 December 2023; Available online: https://openreview.net/forum?id=OcHrsQox0Z (accessed on 7 February 2025).
- Biehl, M.; Guckelsberger, C.; Salge, C.; Smith, S.C.; Polani, D. Expanding the Active Inference Landscape: More Intrinsic Motivations in the Perception-Action Loop. Front. Neurorobot. 2018, 12, 45. [Google Scholar] [CrossRef]
- Sakthivadivel, D.A.R. Towards a Geometry and Analysis for Bayesian Mechanics. arXiv 2022, arXiv:2204.11900. [Google Scholar]
- Friston, K.; Da Costa, L.; Hafner, D.; Hesp, C.; Parr, T. Sophisticated Inference. Neural Comput. 2021, 33, 713–763. [Google Scholar] [CrossRef]
- Tiomkin, S.; Nemenman, I.; Polani, D.; Tishby, N. Intrinsic Motivation in Dynamical Control Systems. PRX Life 2024, 2, 033009. [Google Scholar] [CrossRef]
- Wissner-Gross, A.D.; Freer, C.E. Causal Entropic Forces. Phys. Rev. Lett. 2013, 110, 168702. [Google Scholar] [CrossRef]
- Ashby, W.R. Requisite Variety and Its Implications for the Control of Complex Systems. In Facets of Systems Science; Springer: Boston, MA, USA, 1991; pp. 405–417. [Google Scholar] [CrossRef]
- Jaynes, E.T. Information Theory and Statistical Mechanics. Phys. Rev. 1957, 106, 620–630. [Google Scholar] [CrossRef]
- Hohwy, J. The Predictive Mind; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Rao, R.P.N.; Ballard, D.H. Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 1999, 2, 79–87. [Google Scholar] [PubMed]
- Salvatori, T.; Song, Y.; Yordanov, Y.; Millidge, B.; Sha, L.; Emde, C.; Xu, Z.; Bogacz, R.; Lukasiewicz, T. A Stable, Fast, and Fully Automatic Learning Algorithm for Predictive Coding Networks. In Proceedings of the Twelfth International Conference on Learning Representations, Vienna, Austria, 7–11 May 2024. [Google Scholar]
- von Helmholtz, H.; Southall, J.P.C. Helmholtz’s Treatise on Physiological Optics; Dover Publications: New York, NY, USA, 1962. [Google Scholar]
- Friston, K.J. A free energy principle for a particular physics. arXiv 2019, arXiv:1906.10184. [Google Scholar]
- Friston, K.; Da Costa, L.; Sakthivadivel, D.A.; Heins, C.; Pavliotis, G.A.; Ramstead, M.; Parr, T. Path integrals, particular kinds, and strange things. Phys. Life Rev. 2023, 47, 35–62. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.; Friston, K.J.; Whyte, C.J. A step-by-step tutorial on active inference and its application to empirical data. J. Math. Psychol. 2022, 107, 102632. [Google Scholar] [CrossRef]
- Brown, H.R.; Friston, K.J.; Bestmann, S. Active Inference, Attention, and Motor Preparation. Front. Psychol. 2011, 2, 218. [Google Scholar] [CrossRef]
- Kiefer, A. Psychophysical Identity and Free Energy. J. R. Soc. Interface 2020, 17, 20200370. [Google Scholar]
- Botvinick, M.; Toussaint, M. Planning as inference. Trends Cogn. Sci. 2012, 16, 485–488. [Google Scholar] [CrossRef]
- Hohwy, J. The Self-Evidencing Brain. Noûs 2014, 50, 259–285. [Google Scholar] [CrossRef]
- Millidge, B.; Tschantz, A.; Buckley, C.L. Whence the Expected Free Energy? Neural Comput. 2021, 33, 447–482. [Google Scholar] [CrossRef]
- Millidge, B.; Tschantz, A.; Seth, A.K.; Buckley, C.L. Understanding the origin of information-seeking exploration in probabilistic objectives for control. arXiv 2021, arXiv:2103.06859. [Google Scholar]
- Parr, T.; Pezzulo, G.; Friston, K. Active Inference: The Free Energy Principle in Mind, Brain, and Behavior; MIT Press: Cambridge, MA, USA, 2022. [Google Scholar]
- Heins, C.; Millidge, B.; Demekas, D.; Klein, B.; Friston, K.; Couzin, I.D.; Tschantz, A. pymdp: A Python library for active inference in discrete state spaces. J. Open Source Softw. 2022, 7, 4098. [Google Scholar] [CrossRef]
- Parr, T.; Friston, K.J. Generalised free energy and active inference. Biol. Cybern. 2018, 113, 495–513. [Google Scholar] [CrossRef] [PubMed]
- Ueltzhöffer, K. On the thermodynamics of prediction under dissipative adaptation. arXiv 2020, arXiv:2009.04006. [Google Scholar]
- Ringstrom, T.J. Reward is not Necessary: How to Create a Modular & Compositional Self-Preserving Agent for Life-Long Learning. arXiv 2023, arXiv:2211.10851. [Google Scholar]
- Friston, K.J.; Da Costa, L.; Tschantz, A.; Kiefer, A.; Salvatori, T.; Neacsu, V.; Koudahl, M.; Heins, C.; Sajid, N.; Markovic, D.; et al. Supervised structure learning. Biol. Psychol. 2024, 193, 108891. [Google Scholar] [CrossRef]
- England, J.L. Statistical physics of self-replication. J. Chem. Phys. 2013, 139, 121923. [Google Scholar] [CrossRef]
- Costa, L.D. Probabilistic Principles for Biophysics and Neuroscience: Entropy Production, Bayesian Mechanics & the Free-Energy Principle. arXiv 2024, arXiv:2410.11735. [Google Scholar]
- Schopenhauer, A.; Payne, E.F.J. The World as Will and Representation; Dover Publications: New York, NY, USA, 1958. [Google Scholar]
- Hesp, C.; Ramstead, M.; Constant, A.; Badcock, P.; Kirchhoff, M.; Friston, K. A Multi-scale View of the Emergent Complexity of Life: A Free-Energy Proposal. In Evolution, Development and Complexity; Georgiev, G.Y., Smart, J.M., Flores Martinez, C.L., Price, M.E., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 195–227. [Google Scholar]
- Friston, K.; Heins, C.; Verbelen, T.; Costa, L.D.; Salvatori, T.; Markovic, D.; Tschantz, A.; Koudahl, M.; Buckley, C.; Parr, T. From pixels to planning: Scale-free active inference. arXiv 2024, arXiv:2407.20292. [Google Scholar]
- Fields, C.; Goldstein, A.; Sandved-Smith, L. Making the Thermodynamic Cost of Active Inference Explicit. Entropy 2024, 26, 622. [Google Scholar] [CrossRef]
- Arocha, J.F. Scientific realism and the issue of variability in behavior. Theory Psychol. 2021, 31, 375–398. [Google Scholar] [CrossRef]
- Smith, R.; Ramstead, M.J.D.; Kiefer, A. Active Inference Models Do Not Contradict Folk Psychology. Synthese 2022, 200, 81. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiefer, A.B. Intrinsic Motivation as Constrained Entropy Maximization. Entropy 2025, 27, 372. https://doi.org/10.3390/e27040372
Kiefer AB. Intrinsic Motivation as Constrained Entropy Maximization. Entropy. 2025; 27(4):372. https://doi.org/10.3390/e27040372
Chicago/Turabian StyleKiefer, Alex B. 2025. "Intrinsic Motivation as Constrained Entropy Maximization" Entropy 27, no. 4: 372. https://doi.org/10.3390/e27040372
APA StyleKiefer, A. B. (2025). Intrinsic Motivation as Constrained Entropy Maximization. Entropy, 27(4), 372. https://doi.org/10.3390/e27040372