Structural Transitions and Melting of Two-Dimensional Ion Crystals in RF Traps
Abstract
:1. Introduction
2. Experimental Techniques
3. Theoretical Approach
3.1. Dimensionless Representation of Positions
3.2. Melting Condition
3.3. Toy-Model Theory of Melting
4. Numerical Simulations
4.1. Molecular Dynamics Simulations
4.2. Diffusion Coefficient Estimation
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Leibfried, D.; Blatt, R.; Monroe, C.; Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 2003, 75, 281. [Google Scholar]
- Häffner, H.; Roos, C.F.; Blatt, R. Quantum computing with trapped ions. Phys. Rep. 2008, 469, 155. [Google Scholar]
- Diedrich, F.; Peik, E.; Chen, J.M.; Quint, W.; Walther, H. Observation of a Phase Transition of Stored Laser-Cooled Ions. Phys. Rev. Lett. 1989, 62, 403. [Google Scholar]
- Schiffer, J.P. Phase Transitions in Coulomb and Dipole Systems. Phys. Rev. Lett. 1993, 70, 818. [Google Scholar] [PubMed]
- Wigner, E. On the Interaction of Electrons in Metals. Phys. Rev. 1934, 46, 1002. [Google Scholar]
- Duca, L.; Mizukami, N.; Perego, E.; Inguscio, M.; Sias, C. Orientational Melting in a Mesoscopic System of Charged Particles. Phys. Rev. Lett. 2023, 131, 083602. [Google Scholar] [CrossRef] [PubMed]
- Keller, J.; Partner, H.L.; Burgermeister, T.; Mehlstäubler, T. Precise Determination of Thermal Radiation Properties of an Ion in a Paul Trap. Phys. Rev. A 2016, 93, 013409. [Google Scholar]
- Monroe, C.; Meekhof, D.; King, B.; Wineland, D. A “Schrödinger Cat” Superposition State of an Atom. Science 1996, 272, 1131. [Google Scholar]
- Schaetz, T. Trapped-ion quantum simulation and experimental quantum information. C. R. Physique 2011, 12, 5. [Google Scholar]
- Lindemann, F.A. Über die Berechnung molekularer Eigenfrequenzen. Phys. Z. 1910, 11, 609. [Google Scholar]
- Guo, W.X.; Zhang, C.; Qi, B.X.; Zhou, Z.C.; He, L.; Duan, L.M. A site-resolved two-dimensional quantum simulator with hundreds of trapped ions. Nature 2024, 630, 613–618. [Google Scholar] [CrossRef] [PubMed]
- D’Onofrio, M.; Xie, Y.; Rasmusson, A.J.; Wolanski, E.; Cui, J.; Richerme, P. Radial Two-Dimensional Ion Crystals in a Linear Paul Trap. Phys. Rev. Lett. 2021, 127, 020503. [Google Scholar] [CrossRef]
- Ivory, M.K.; Kato, A.; Hasanzadeh, A.; Blinov, B. A Paul Trap with Sectored Ring Electrodes for Experiments with Two-Dimensional Ion Crystals. Rev. Sci. Insruments 2020, 91, 053201. [Google Scholar] [CrossRef]
- Yoshimura, B.; Stork, M.; Campbell, W.C.; Freericks, J.K. Creation of Two-Dimensional Coulomb Crystals of Ions in RF Paul Traps. EPJ Quantum Technol. 2015, 2, 2. [Google Scholar] [CrossRef]
- Kato, A.; Nomerotski, A.; Blinov, B. Micromotion-synchronized pulsed Doppler cooling of trapped ions. Phys. Rev. A 2023, 107, 023116. [Google Scholar] [CrossRef]
- Kato, A.; Goel, A.; Lee, R.; Ye, Z.; Karki, S.; Liu, J.J.; Nomerotski, A.; Blinov, B.B. Two-tone Doppler cooling of radial two-dimensional crystals in a radiofrequency ion trap. Phys. Rev. A 2022, 105, 023101. [Google Scholar] [CrossRef]
- Kiesenhofer, D.; Hainzer, H.; Zhdanov, A.; Holz, P.C.; Bock, M.; Ollikainen, T.; Roos, C.F. Controlling Two-Dimensional Coulomb Crystals of More Than 100 Ions in a Monolithic Radio-Frequency Trap. PRX Quantum 2023, 4, 020317. [Google Scholar] [CrossRef]
- Wineland, D.J.; Monroe, C.; Itano, W.M.; Leibfried, D.; King, B.E.; Meekhof, D.M. Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions. J. Res. Natl. Inst. Stand. Technol. 1998, 103, 259. [Google Scholar] [PubMed]
- Guardiola, R.; Navarro, J. On the Lindemann Criterion for quantum clusters at very low temperature. J. Phys. Chem. A 2011, 115, 2734–2740. [Google Scholar] [CrossRef]
- Robbins, M.O.; Grest, G.S.; Kremer, K. Effect of finite system size on thermal fluctuations: Implications for melting. Phys. Rev. B 1990, 42, 5579. [Google Scholar] [CrossRef]
- Zheng, X.H.; Earnshaw, J.C. On the Lindemann criterion in 2D. Europhys. Lett. 1998, 41, 635–640. [Google Scholar] [CrossRef]
- Zhou, M.Y.; Sheng, P. Lattice softening and melting characteristics of granular particles. Phys. Rev. B 1991, 43, 3460. [Google Scholar] [CrossRef] [PubMed]
- Verlet, L. Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Phys. Rev. 1967, 159, 98. [Google Scholar]
- Berendsen, H.J.C.; Postma, J.P.M.; van Gunsteren, W.F.; DiNola, A.; Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984, 81, 3684. [Google Scholar]
- Dubin, D.H.E.; O’Neil, T.M. Trapped nonneutral plasmas, liquids, and crystals (the thermal equilibrium states). Rev. Mod. Phys. 1999, 71, 87. [Google Scholar]
- Ott, T.; Stanley, M.; Bonitz, M. Non-invasive determination of the parameters of strongly coupled 2D Yukawa liquids. Phys. Plasmas 2011, 18, 063701. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pashinsky, B.V.; Kato, A.; Blinov, B.B. Structural Transitions and Melting of Two-Dimensional Ion Crystals in RF Traps. Entropy 2025, 27, 325. https://doi.org/10.3390/e27040325
Pashinsky BV, Kato A, Blinov BB. Structural Transitions and Melting of Two-Dimensional Ion Crystals in RF Traps. Entropy. 2025; 27(4):325. https://doi.org/10.3390/e27040325
Chicago/Turabian StylePashinsky, Boris V., Alexander Kato, and Boris B. Blinov. 2025. "Structural Transitions and Melting of Two-Dimensional Ion Crystals in RF Traps" Entropy 27, no. 4: 325. https://doi.org/10.3390/e27040325
APA StylePashinsky, B. V., Kato, A., & Blinov, B. B. (2025). Structural Transitions and Melting of Two-Dimensional Ion Crystals in RF Traps. Entropy, 27(4), 325. https://doi.org/10.3390/e27040325