Matter-Aggregating Systems at a Classical vs. Quantum Interface
Acknowledgments
Conflicts of Interest
List of Contributions
- A.
- Gadomski, A. (Nano)Granules-Involving Aggregation at a Passage to the Nanoscale as Viewed in Terms of a Diffusive Heisenberg Relation. Entropy 2024, 26, 76. https://doi.org/10.3390/e26010076.
- B.
- Siódmiak, J. (Non)Resonance Bonds in Molecular Dynamics Simulations: A Case Study Concerning C60 Fullerenes. Entropy 2024, 26, 214. https://doi.org/10.3390/e26030214.
- C.
- Arango-Restrepo, A.; Rubi, J. M. Thermodynamic Insights into Symmetry Breaking: Exploring Energy Dissipation across Diverse Scales. Entropy 2024, 26, 231. https://doi.org/10.3390/e26030231.
- D.
- Crisanti, A.; Salasnich, L.; Sarracino, A.; Zannetti, M. Canonical vs. Grand Canonical Ensemble for Bosonic Gases under Harmonic Confinement. Entropy 2024, 26, 367. https://doi.org/10.3390/e26050367.
- E.
- Sionkowski, P.; Kruszewska, N.; Kreitschitz, A.; Gorb, S.N.; Domino, K. Application of Recurrence Plot Analysis to Examine Dynamics of Biological Molecules on the Example of Aggregation of Seed Mucilage Components. Entropy 2024, 26, 380. https://doi.org/10.3390/e26050380.
- F.
- Cerdeiriña, C. A.; Troncoso, J. Ising Paradigm in Isobaric Ensembles. Entropy 2024, 26, 438. https://doi.org/10.3390/e26060438.
- G.
- Dajka, J. Interference of Particles with Fermionic Internal Degrees of Freedom. Entropy 2024, 26, 449. https://doi.org/10.3390/e26060449.
- H.
- Löffler, R. J. G.; Gorecki, J. Dynamics of Aggregation in Systems of Self-Propelled Rods. Entropy 2024, 26, 980. https://doi.org/10.3390/e26110980.
References
- Hansen, J.P.; Ian McDonald, R. Theory of Simple Liquids; Academic Press: New York, NY, USA, 1976. [Google Scholar]
- Bawendi, M.G.; Steigerwald, M.L.; Brus, L.E. The Quantum Mechanics of Larger Semiconductor Clusters (“Quantum Dots”). Annu. Rev. Phys. Chem. 1990, 41, 477–479. [Google Scholar] [CrossRef]
- Schmelzer, J.; Roepke, G.; Mahnke, R. Aggregation Phenomena in Complex Systems; Wiley: Weinheim, Germany, 1999. [Google Scholar]
- Sionkowski, P.; Kruszewska, N.; Kreitschitz, A.; Gorb, S.N.; Domino, K. Application of Recurrence Plot Analysis to Examine Dynamics of Biological Molecules on the Example of Aggregation of Seed Mucilage Components. Entropy 2024, 26, 380. [Google Scholar] [CrossRef] [PubMed]
- Gadomski, A.; Kruszewska, N. Matter-Aggregating Low-Dimensional Nanostructures at the Edge of the Classical vs. Quantum Realm. Entropy 2023, 25, 1. [Google Scholar] [CrossRef] [PubMed]
- Arango-Restrepo, A.; Torrenegra-Rico, J.D.; Rubi, J.M. Entropy Production in a System of Janus Particles. Entropy 2025, 27, 112. [Google Scholar] [CrossRef] [PubMed]
- Boon, J.P.; Tsallis, C. Nonextensive Statistical Mechanics: New Trends, New Perspectives. Europhys. News 2005, 36, 185. [Google Scholar] [CrossRef]
- Łuczka, J.; Niemiec, M.; Rudnicki, R. Kinetics of Growth Process Controlled by Convective Fluctuations. Phys. Rev. E 2002, 65, 051401. [Google Scholar] [CrossRef] [PubMed]
- Binder, K. Statistical Mechanics of Finite Three-Dimensional Ising Models. Phys. A 1972, 62, 508. [Google Scholar] [CrossRef]
- Spiechowicz, J.; Marchenko, I.G.; Hänggi, P.; Łuczka, J. Diffusion Coefficient of a Brownian Particle in Equilibrium and Nonequilibrium: Einstein Model and Beyond. Entropy 2023, 25, 42. [Google Scholar] [CrossRef] [PubMed]
#1 | #2 | #3 |
---|---|---|
A/(Nano)Granules-Involving Aggregation | Nanoscale quantum-size effect | Heisenberg uncertainty relation |
B/Molecular Dynamics Simulations of C60 Fullerenes | (Non)resonance bonds | Electron delocalization between different atoms within a molecule |
C/Symmetry-Breaking Exploring Energy Dissipation across Diverse Aggregation Scales (review) | Emergence of life in complex systems and organisms | Enantiomeric amino acids and proteins, and their aggregates |
D/Bosonic Gases under Harmonic Confinement | Canonical vs. grand canonical ensemble | Bose–Einstein condensation |
E/Aggregation of Seed Mucilage Components | Recurrence plots uncovering dynamics of biological molecules | Non-covalent interactions and bonding |
F/Ising Paradigm in Isobaric Ensembles (review) | Local entropic effects | Compressible spin cells |
G/Particles with Fermionic Internal Degrees of Freedom | Mach–Zehnder interferometer and Hubbard dimer | Interference of fermionic-type particles |
H/Aggregation in Systems of Self-Propelled Rods | Low-symmetry interaction between rods | Dynamics of self-propelled rods as resembling a vortex involving boson systems behavior |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gadomski, A.; Kruszewska, N. Matter-Aggregating Systems at a Classical vs. Quantum Interface. Entropy 2025, 27, 273. https://doi.org/10.3390/e27030273
Gadomski A, Kruszewska N. Matter-Aggregating Systems at a Classical vs. Quantum Interface. Entropy. 2025; 27(3):273. https://doi.org/10.3390/e27030273
Chicago/Turabian StyleGadomski, Adam, and Natalia Kruszewska. 2025. "Matter-Aggregating Systems at a Classical vs. Quantum Interface" Entropy 27, no. 3: 273. https://doi.org/10.3390/e27030273
APA StyleGadomski, A., & Kruszewska, N. (2025). Matter-Aggregating Systems at a Classical vs. Quantum Interface. Entropy, 27(3), 273. https://doi.org/10.3390/e27030273