Optimal Control of an Electromechanical Energy Harvester
Abstract
:1. Introduction
2. Energy Harvester Dynamics
3. Global Optimization
3.1. Pontryagin’s Maximum Principle
3.2. PMP for Affine Dynamics
3.3. Is the Stationary Optimum a Global Optimum?
3.4. A Perturbative Approach to the Solution
4. Results
An Explicit Example: The Case
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Energy Harvester Model in Dimensionless Units
- Mass ;
- Time ;
- Length ;
- Current intensity .
M (kg) | (kg/s) | (N/m) | (N/A) | (H) | () |
---|---|---|---|---|---|
0.048(5) | 1.80(5) | 18,810(50) | 29.9(5) | 0.124(5) | 227.6(5) |
2.67 × 10−2 | 1.60 × 10−3 | 2.58 × 10−3 | 5.44 × 10−4 | 3.22 | 9.66 × 10−2 | 4.74 |
Appendix B. Discontinuous Protocol: Boundary Conditions and Power Extraction
References
- Bellman, R.; Kalaba, R. A mathematical theory of adaptive control processes. Proc. Natl. Acad. Sci. USA 1959, 45, 1288–1290. [Google Scholar] [CrossRef] [PubMed]
- Pontryagin, L.S.; Boltyanskii, V.G.; Gamkrelidze, R.V.; Mishchenko, E.F. The Mathematical Theory of Optimal Processes; John Wiley & Sons: New York, NY, USA, 1962. [Google Scholar]
- Kirk, D.E. Optimal Control Theory: An Introduction; Prentice Hall: Englewood Cliffs, NJ, USA, 1970. [Google Scholar]
- Guéry-Odelin, D.; Ruschhaupt, A.; Kiely, A.; Torrontegui, E.; Martínez-Garaot, S.; Muga, J.G. Shortcuts to adiabaticity: Concepts, methods, and applications. Rev. Mod. Phys. 2019, 91, 045001. [Google Scholar] [CrossRef]
- Guéry-Odelin, D.; Jarzynski, C.; Plata, C.A.; Prados, A.; Trizac, E. Driving rapidly while remaining in control: Classical shortcuts from Hamiltonian to stochastic dynamics. Rep. Prog. Phys. 2023, 86, 035902. [Google Scholar] [CrossRef] [PubMed]
- Blaber, S.; Sivak, D.A. Optimal control in stochastic thermodynamics. J. Phys. Commun. 2023, 7, 033001. [Google Scholar] [CrossRef]
- Schmiedl, T.; Seifert, U. Optimal Finite-Time Processes In Stochastic Thermodynamics. Phys. Rev. Lett. 2007, 98, 108301. [Google Scholar] [CrossRef]
- Martínez, I.A.; Petrosyan, A.; Guéry-Odelin, D.; Trizac, E.; Ciliberto, S. Engineered swift equilibration of a Brownian particle. Nat. Phys. 2016, 12, 843–846. [Google Scholar] [CrossRef] [PubMed]
- Patrón, A.; Prados, A.; Plata, C.A. Thermal brachistochrone for harmonically confined Brownian particles. Eur. Phys. J. Plus 2022, 137, 1–20. [Google Scholar] [CrossRef]
- Gomez-Marin, A.; Schmiedl, T.; Seifert, U. Optimal protocols for minimal work processes in underdamped stochastic thermodynamics. J. Chem. Phys. 2008, 129, 024114. [Google Scholar] [CrossRef]
- Muratore-Ginanneschi, P. On extremals of the entropy production by ‘Langevin–Kramers’ dynamics. J. Stat. Mech. Theory Exp. 2014, 2014, P05013. [Google Scholar] [CrossRef]
- Muratore-Ginanneschi, P.; Schwieger, K. How nanomechanical systems can minimize dissipation. Phys. Rev. E 2014, 90, 060102. [Google Scholar] [CrossRef]
- Baldovin, M.; Yedder, I.B.; Plata, C.A.; Raynal, D.; Rondin, L.; Trizac, E.; Prados, A. Optimal control of levitated nanoparticles through finite-stiffness confinement. arXiv 2024, arXiv:2408.00043. [Google Scholar]
- Plata, C.A.; Prados, A.; Trizac, E.; Guéry-Odelin, D. Taming the Time Evolution in Overdamped Systems: Shortcuts Elaborated from Fast-Forward and Time-Reversed Protocols. Phys. Rev. Lett. 2021, 127, 190605. [Google Scholar] [CrossRef] [PubMed]
- Sanders, J.; Baldovin, M.; Muratore-Ginanneschi, P. Optimal control of underdamped systems: An analytic approach. J. Stat. Phys. 2024, 191, 117. [Google Scholar] [CrossRef] [PubMed]
- Sanders, J.; Baldovin, M.; Muratore-Ginanneschi, P. Minimal-work protocols for inertial particles in non-harmonic traps. arXiv 2024, arXiv:2407.15678. [Google Scholar]
- Baldassarri, A.; Puglisi, A.; Sesta, L. Engineered swift equilibration of a Brownian gyrator. Phys. Rev. E 2020, 102, 030105. [Google Scholar] [CrossRef] [PubMed]
- Loos, S.A.; Monter, S.; Ginot, F.; Bechinger, C. Universal symmetry of optimal control at the microscale. Phys. Rev. X 2024, 14, 021032. [Google Scholar] [CrossRef]
- De Bruyne, B.; Mori, F. Resetting in stochastic optimal control. Phys. Rev. Res. 2023, 5, 013122. [Google Scholar] [CrossRef]
- Goerlich, R.; Keidar, T.D.; Roichman, Y. Resetting as a swift equilibration protocol in an anharmonic potential. Phys. Rev. Res. 2024, 6, 033162. [Google Scholar] [CrossRef]
- Shankar, S.; Raju, V.; Mahadevan, L. Optimal transport and control of active drops. Proc. Natl. Acad. Sci. USA 2022, 119, e2121985119. [Google Scholar] [CrossRef]
- Baldovin, M.; Guéry-Odelin, D.; Trizac, E. Control of Active Brownian Particles: An Exact Solution. Phys. Rev. Lett. 2023, 131, 118302. [Google Scholar] [CrossRef]
- Davis, L.K.; Proesmans, K.; Fodor, E. Active Matter under Control: Insights from Response Theory. Phys. Rev. X 2024, 14, 011012. [Google Scholar] [CrossRef]
- Garcia-Millan, R.; Schüttler, J.; Cates, M.E.; Loos, S.A. Optimal closed-loop control of active particles and a minimal information engine. arXiv 2024, arXiv:2407.18542. [Google Scholar]
- Prados, A. Optimizing the relaxation route with optimal control. Phys. Rev. Res. 2021, 3, 023128. [Google Scholar] [CrossRef]
- Ruiz-Pino, N.; Prados, A. Optimal control of uniformly heated granular fluids in linear response. Entropy 2022, 24, 131. [Google Scholar] [CrossRef] [PubMed]
- Plati, A.; Petri, A.; Baldovin, M. Control of friction: Shortcuts and optimization for the rate- and state-variable equation. Eur. J. Mech.—A/Solids 2025, 111, 105550. [Google Scholar] [CrossRef]
- Singh, J.; Kaur, R.; Singh, D. Energy harvesting in wireless sensor networks: A taxonomic survey. Int. J. Energy Res. 2021, 45, 118–140. [Google Scholar] [CrossRef]
- Halvorsen, E. Energy harvesters driven by broadband random vibrations. J. Microelectromech. Syst. 2008, 17, 1061–1071. [Google Scholar] [CrossRef]
- Costanzo, L.; Lo Schiavo, A.; Sarracino, A.; Vitelli, M. Stochastic thermodynamics of a piezoelectric energy harvester model. Entropy 2021, 23, 677. [Google Scholar] [CrossRef]
- Costanzo, L.; Baldassarri, A.; Lo Schiavo, A.; Sarracino, A.; Vitelli, M. Inference of Time-Reversal Asymmetry from Time Series in a Piezoelectric Energy Harvester. Symmetry 2023, 16, 39. [Google Scholar] [CrossRef]
- Sanfelice, A.; Costanzo, L.; Lo Schiavo, A.; Sarracino, A.; Vitelli, M. Stochastic Model for a Piezoelectric Energy Harvester Driven by Broadband Vibrations. Entropy 2024, 26, 1097. [Google Scholar] [CrossRef]
- Costanzo, L.; Lo Schiavo, A.; Sarracino, A.; Vitelli, M. Stochastic Thermodynamics of an Electromagnetic Energy Harvester. Entropy 2022, 24, 1222. [Google Scholar] [CrossRef] [PubMed]
- Clementi, G.; Cottone, F.; Di Michele, A.; Gammaitoni, L.; Mattarelli, M.; Perna, G.; López-Suárez, M.; Baglio, S.; Trigona, C.; Neri, I. Review on innovative piezoelectric materials for mechanical energy harvesting. Energies 2022, 15, 6227. [Google Scholar] [CrossRef]
- Shen, W.; Zhu, S.; Zhu, H. Unify energy harvesting and vibration control functions in randomly excited structures with electromagnetic devices. J. Eng. Mech. 2019, 145, 04018115. [Google Scholar] [CrossRef]
- Astumian, R.D.; Bier, M. Fluctuation driven ratchets: Molecular motors. Phys. Rev. Lett. 1994, 72, 1766–1769. [Google Scholar] [CrossRef]
- Reimann, P.; Hänggi, P. Introduction to the physics of Brownian motors. Appl. Phys. A 2002, 75, 169–178. [Google Scholar] [CrossRef]
- Gnoli, A.; Petri, A.; Dalton, F.; Pontuale, G.; Gradenigo, G.; Sarracino, A.; Puglisi, A. Brownian Ratchet in a Thermal Bath Driven by Coulomb Friction. Phys. Rev. Lett. 2013, 110, 120601. [Google Scholar] [CrossRef]
- Manacorda, A.; Puglisi, A.; Sarracino, A. Coulomb Friction Driving Brownian Motors. Commun. Theor. Phys. 2014, 62, 505. [Google Scholar] [CrossRef]
- Tarlie, M.B.; Astumian, R.D. Optimal modulation of a Brownian ratchet and enhanced sensitivity to a weak external force. Proc. Natl. Acad. Sci. USA 1998, 95, 2039–2043. [Google Scholar] [CrossRef]
- Cao, F.J.; Dinis, L.; Parrondo, J.M.R. Feedback Control in a Collective Flashing Ratchet. Phys. Rev. Lett. 2004, 93, 040603. [Google Scholar] [CrossRef]
- Zulkowski, P.R.; DeWeese, M.R. Optimal control of overdamped systems. Phys. Rev. E 2015, 92, 032117. [Google Scholar] [CrossRef]
- Gammaitoni, L.; Vocca, H.; Neri, I.; Travasso, F.; Orfei, F. Vibration energy harvesting: Linear and nonlinear oscillator approaches. In Sustainable Energy Harvesting Technologies-Past, Present and Future; IntechOpen: London, UK, 2011; pp. 171–190. [Google Scholar]
- Cottone, F.; Vocca, H.; Gammaitoni, L. Nonlinear energy harvesting. Phys. Rev. Lett. 2009, 102, 080601. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Jin, Y. Stochastic optimal control of a tri-stable energy harvester with the P-SSHI circuit under colored noise. Eur. Phys. J. B 2024, 97, 10. [Google Scholar] [CrossRef]
- Zhang, T.; Jin, Y. Stochastic optimal control of a coupled tri-stable energy harvester under correlated colored noises. Nonlinear Dyn. 2024, 112, 6993–7010. [Google Scholar] [CrossRef]
- Ahmed, H.M.; El-Borai, M.M.; El-Sayed, W.; Elbadrawi, A. Null Controllability of Hilfer Fractional Stochastic Differential Inclusions. Fractal Fract. 2022, 6, 721. [Google Scholar] [CrossRef]
- Ahmed, H.M.; El-Borai, M.M.; El-Sayed, W.G.; Elbadrawi, A.Y. Fractional Stochastic Evolution Inclusions with Control on the Boundary. Symmetry 2023, 15, 928. [Google Scholar] [CrossRef]
- Liberzon, D. Calculus of Variations and Optimal Control Theory: A Concise Introduction; Princeton University Press: Princeton, NJ, USA, 2011. [Google Scholar]
- Gardiner, C. Stochastic Methods; Springer: Berlin/Heidelberg, Germany, 2009; Volume 4. [Google Scholar]
- Muratore-Ginanneschi, P.; Schwieger, K. An application of Pontryagin’s principle to Brownian particle engineered equilibration. Entropy 2017, 19, 379. [Google Scholar] [CrossRef]
- Frobenius, F. Ueber lineare Substitutionen und bilineare Formen. J. Reine Angew. Math. (Crelles J.) 1878, 1878, 1–63. [Google Scholar] [CrossRef]
- Lang, S. Linear Algebra; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1987. [Google Scholar]
- Brenes, A.; Morel, A.; Juillard, J.; Lefeuvre, E.; Badel, A. Maximum power point of piezoelectric energy harvesters: A review of optimality condition for electrical tuning. Smart Mater. Struct. 2020, 29, 033001. [Google Scholar] [CrossRef]
- Bellman, R. Dynamic programming and stochastic control processes. Inf. Control 1958, 1, 228–239. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucente, D.; Manacorda, A.; Plati, A.; Sarracino, A.; Baldovin, M. Optimal Control of an Electromechanical Energy Harvester. Entropy 2025, 27, 268. https://doi.org/10.3390/e27030268
Lucente D, Manacorda A, Plati A, Sarracino A, Baldovin M. Optimal Control of an Electromechanical Energy Harvester. Entropy. 2025; 27(3):268. https://doi.org/10.3390/e27030268
Chicago/Turabian StyleLucente, Dario, Alessandro Manacorda, Andrea Plati, Alessandro Sarracino, and Marco Baldovin. 2025. "Optimal Control of an Electromechanical Energy Harvester" Entropy 27, no. 3: 268. https://doi.org/10.3390/e27030268
APA StyleLucente, D., Manacorda, A., Plati, A., Sarracino, A., & Baldovin, M. (2025). Optimal Control of an Electromechanical Energy Harvester. Entropy, 27(3), 268. https://doi.org/10.3390/e27030268