Mean Field Approaches to Lattice Gauge Theories: A Review
Abstract
:1. Introduction
2. Reminder on Mean Field Theory
2.1. An Application to Spin Models
2.2. An Application to Many-Body Systems: The BCS Theory
3. Gauge Symmetry in Quantum Field Theory
3.1. Equations of Motion and Bianchi Identity
3.2. Parallel Transport
- If and are two space–time paths, it satisfies the composition rule
- Under a gauge transformation
4. Lattice Gauge Theories
4.1. Lagrangian Formulation
4.2. Hamiltonian Formulation
4.2.1. Bosonic Quantum Link Models
4.2.2. Fermionic Quantum Link Models
4.3. Elitzur’s Theorem
5. Reformulations in Terms of Gauge Invariants
5.1. Recombinations of Degrees of Freedom
5.2. Field Strength Reformulations
5.3. Wilson Loop Reformulations
6. Mean Field Method Applied to Lattice Gauge Theories with Compact Gauge Group
- Perform the computation in a given gauge. This, of course, will give a different result for each possible gauge choice. For example, in the axial gauge, where the temporal links are fixed to the identity and are no longer dynamical, this restores Elitzur’s theorem, but the price to pay is having long-range correlated spatial links along the temporal direction [83];
- Use a generalized MF procedure [11], where the source term is chosen as
- Reformulate the theory in terms of gauge-invariant variables. This allows for the choice of any possible type of order parameter, without violating Elitzur’s theorem. However, depending on the reformulation, we have different advantages and disadvantages that we are going to comment on.
Comparisons Between Reformulations and Final Considerations
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peskin, M.; Schroeder, D. An Introduction to Quantum Field Theory; Addison-Wesley Pub. Co.: Reading, MA, USA, 1995. [Google Scholar]
- Schwartz, M.D. Quantum Field Theory and the Standard Model; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Maggiore, M. A Modern Introduction to Quantum Field Theory; OUP Oxford: Oxford, UK, 2005. [Google Scholar]
- Wen, X.G. Quantum Field Theory of Many-Body Systems; OUP Oxford: Oxford, UK, 2004. [Google Scholar]
- Wilson, K.G. Confinement of quarks. Phys. Rev. D 1974, 10, 2445–2459. [Google Scholar] [CrossRef]
- Kogut, J.; Susskind, L. Hamiltonian formulation of Wilson’s lattice gauge theories. Phys. Rev. D 1975, 11, 395–408. [Google Scholar] [CrossRef]
- Rothe, H.J. Lattice Gauge Theories: An Introduction; World Scientific Publishing Company: Singapore, 2005. [Google Scholar]
- Creutz, M. Quarks, Gluons and Lattices; Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK, 1985. [Google Scholar]
- Troyer, M.; Wiese, U.J. Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations. Phys. Rev. Lett. 2005, 94, 170–201. [Google Scholar] [CrossRef] [PubMed]
- Fukushima, K.; Hatsuda, T. The phase diagram of dense QCD. Rep. Prog. Phys. 2010, 74, 014001. [Google Scholar] [CrossRef]
- Drouffe, J.M.; Zuber, J.B. Strong coupling and mean field methods in lattice gauge theories. Phys. Rep. 1983, 102, 1–119. [Google Scholar] [CrossRef]
- Schrieffer, J. Theory of Superconductivity; Advanced Books Classics; Avalon Publishing: Emeryville, CA, USA, 1999. [Google Scholar]
- Oliphant, T.A.; Tobocman, W. Gauge Invariant Formulation of the Bardeen-Cooper-Schrieffer Theory of Superconductivity. Phys. Rev. 1960, 119, 502–503. [Google Scholar] [CrossRef]
- Nambu, Y. Quasi-Particles and Gauge Invariance in the Theory of Superconductivity. Phys. Rev. 1960, 117, 648–663. [Google Scholar] [CrossRef]
- Nambu, Y.; Tuan, S.F. Magnetic Field Dependence of the Energy Gap in Superconductors. Phys. Rev. 1962, 128, 2622–2629. [Google Scholar] [CrossRef]
- Elitzur, S. Impossibility of spontaneously breaking local symmetries. Phys. Rev. D 1975, 12, 3978–3982. [Google Scholar] [CrossRef]
- Dalmonte, M.; Montangero, S. Lattice gauge theory simulations in the quantum information era. Contemp. Phys. 2016, 57, 388–412. [Google Scholar] [CrossRef]
- Pinto Barros, J.C.; Burrello, M.; Trombettoni, A. Gauge Theories with Ultracold Atoms. In Strongly Coupled Field Theories for Condensed Matter and Quantum Information Theory; Springer: Berlin/Heidelberg, Germany, 2020; pp. 217–245. [Google Scholar]
- Aidelsburger, M.; Barbiero, L.; Bermudez, A.; Chanda, T.; Dauphin, A.; González-Cuadra, D.; Grzybowski, P.R.; Hands, S.; Jendrzejewski, F.; Jünemann, J.; et al. Cold atoms meet lattice gauge theory. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2022, 380, 20210064. [Google Scholar] [CrossRef] [PubMed]
- Halimeh, J.C.; Aidelsburger, M.; Grusdt, F.; Hauke, P.; Yang, B. Cold-atom quantum simulators of gauge theories. Nat. Phys. 2025, 21, 25–36. [Google Scholar] [CrossRef]
- Fontana, P. Quantum Simulations of Gauge Theories and Topological Phases. Ph.D. Thesis, Scuola Internazionale Superiore di Studi Avanzati di Trieste, Trieste, Italy, 2022. Available online: https://iris.sissa.it/handle/20.500.11767/129710 (accessed on 3 February 2025).
- Parisi, G. Statistical Field Theory (Frontiers in Physics); Addison-Wesley: Redwood City, CA, USA, 1988. [Google Scholar]
- Cardy, J. Scaling and Renormalization in Statistical Physics; Cambridge Lecture Notes in Physics 5; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Nishimori, H.; Ortiz, G. Elements of Phase Transitions and Critical Phenomena, 1st ed.; Oxford Graduate Texts; Oxford University Press: Oxford, UK, 2011; p. XIII. [Google Scholar] [CrossRef]
- Yeomans, J. Statistical Mechanics of Phase Transitions; Clarendon: Oxford, UK, 1992. [Google Scholar]
- Wipf, A. Statistical Approach to Quantum Field Theory: An Introduction, 2013, 1st ed.; Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Altland, A.; Simons, B. Condensed Matter Field Theory, 2nd ed.; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Sachdev, S. Quantum Phase Transitions, 2nd ed.; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- El-Batanouny, M. Advanced Quantum Condensed Matter Physics: One-Body, Many-Body, and Topological Perspectives; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
- Stoof, H.T.C.; Gubbels, K.B.; Dickerscheid, D.B.M. Ultracold Quantum Fields; Springer: Dordrecht, The Netherlands, 2009. [Google Scholar]
- Zuber, J.B.; Itzykson, C. Quantum Field Theory; Courier Corporation: North Chelmsford, MA, USA, 2012. [Google Scholar]
- Gattringer, C.; Lang, C. Quantum Chromodynamics on the Lattice: An Introductory Presentation; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009; Volume 788. [Google Scholar]
- Creutz, M. Monte Carlo study of quantized SU(2) gauge theory. Phys. Rev. D 1980, 21, 2308–2315. [Google Scholar] [CrossRef]
- Creutz, M.; Moriarty, K.J.M. Numerical studies of Wilson loops in SU(3) gauge theory in four dimensions. Phys. Rev. D 1982, 26, 2166–2168. [Google Scholar] [CrossRef]
- Stack, J.D. Heavy-quark potential in SU(3) lattice gauge theory. Phys. Rev. D 1984, 29, 1213–1218. [Google Scholar] [CrossRef]
- Born, K.D.; Laermann, E.; Pirch, N.; Walsh, T.F.; Zerwas, P.M. Hadron properties in lattice QCD with dynamical fermions. Phys. Rev. D 1989, 40, 1653–1663. [Google Scholar] [CrossRef] [PubMed]
- Bowler, K.; Chalmers, D.; Kenway, A.; Kenway, R.; Pawley, G.S.; Wallace, D. A critique of quenched hadron mass calculations. Phys. Lett. B 1985, 162, 354–356. [Google Scholar] [CrossRef]
- Michael, C.; Teper, M. The glueball spectrum in SU(3). Nucl. Phys. B 1989, 314, 347–362. [Google Scholar] [CrossRef]
- Yoshié, T.; Iwasaki, Y.; Sakai, S. Hadron spectrum on a 243 × 60 lattice. Nucl. Phys. B-Proc. Suppl. 1990, 17, 413–416. [Google Scholar] [CrossRef]
- Laermann, E.; Altmeyer, R.; Born, K.; Ibes, W.; Sommer, R.; Walsh, T.; Zerwas, P. QCD with dynamical fermions. Nucl. Phys. B-Proc. Suppl. 1990, 17, 436–442. [Google Scholar] [CrossRef]
- Hofmann, R. The Thermodynamics of Quantum Yang–Mills Theory; World Scientific Publishing Company: Singapore, 2016. [Google Scholar] [CrossRef]
- D’Elia, M. High-Temperature QCD: Theory overview. Nucl. Phys. A 2019, 982, 99–105. [Google Scholar] [CrossRef]
- Wiese, U.J. Ultracold quantum gases and lattice systems: Quantum simulation of lattice gauge theories. Ann. Phys. 2013, 525, 777–796. [Google Scholar] [CrossRef]
- Rokhsar, D.S.; Kivelson, S.A. Superconductivity and the Quantum Hard-Core Dimer Gas. Phys. Rev. Lett. 1988, 61, 2376–2379. [Google Scholar] [CrossRef] [PubMed]
- Horn, D. Finite matrix models with continuous local gauge invariance. Phys. Lett. B 1981, 100, 149–151. [Google Scholar] [CrossRef]
- Orland, P.; Rohrlich, D. Lattice gauge magnets: Local isospin from spin. Nucl. Phys. B 1990, 338, 647–672. [Google Scholar] [CrossRef]
- Chandrasekharan, S.; Wiese, U.J. Quantum link models: A discrete approach to gauge theories. Nucl. Phys. B 1997, 492, 455–471. [Google Scholar] [CrossRef]
- Brower, R.; Chandrasekharan, S.; Wiese, U.J. QCD as a quantum link model. Phys. Rev. D 1999, 60, 094502. [Google Scholar] [CrossRef]
- Zohar, E.; Cirac, J.I.; Reznik, B. Quantum simulations of lattice gauge theories using ultracold atoms in optical lattices. Rep. Prog. Phys. 2016, 79. [Google Scholar] [CrossRef] [PubMed]
- Zohar, E.; Burrello, M. Formulation of lattice gauge theories for quantum simulations. Phys. Rev. D 2015, 91, 054506. [Google Scholar] [CrossRef]
- Kasper, V.; Hebenstreit, F.; Jendrzejewski, F.; Oberthaler, M.K.; Berges, J. Implementing quantum electrodynamics with ultracold atomic systems. New J. Phys. 2017, 19, 023030. [Google Scholar] [CrossRef]
- Banerjee, D.; Jiang, F.J.; Widmer, P.; Wiese, U.J. The (2 + 1)-d U(1) Quantum Link Model Masq. Deconfined Crit. J. Stat. Mech. Theory Exp. 2013, 2013, 12010. [Google Scholar] [CrossRef]
- Widmer, P.; Banerjee, D.; Jiang, F.J.; Wiese, U.J. Crystalline confinement. PoS 2014, 187, 333. [Google Scholar] [CrossRef]
- Banerjee, D.; Caspar, S.; Jiang, F.J.; Peng, J.H.; Wiese, U.J. Nematic Confined Phases in the U(1) Quantum Link Model on a Triangular Lattice: An Opportunity for Near-Term Quantum Computations of String Dynamics on a Chip. arXiv 2021, arXiv:2107.0128. [Google Scholar] [CrossRef]
- Banerjee, D.; Sen, A. Quantum Scars from Zero Modes in an Abelian Lattice Gauge Theory on Ladders. Phys. Rev. Lett. 2021, 126, 220601. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, D.; Huffman, E.; Rammelmüller, L. Exploring bosonic and fermionic link models on (3 + 1)D tubes. Phys. Rev. Res. 2022, 4, 033174. [Google Scholar] [CrossRef]
- Kasper, V.; Hebenstreit, F.; Oberthaler, M.; Berges, J. Schwinger pair production with ultracold atoms. Phys. Lett. B 2016, 760, 742–746. [Google Scholar] [CrossRef]
- Moessner, R.; Sondhi, S.L.; Fradkin, E. Short-ranged resonating valence bond physics, quantum dimer models, and Ising gauge theories. Phys. Rev. B 2001, 65, 024504. [Google Scholar] [CrossRef]
- Banerjee, D.; Huffman, E.; Rammelmüller, L. Introducing Fermionic Link Models. arXiv 2021, arXiv:2111.00300. [Google Scholar] [CrossRef]
- Dirac, P.A.M. Gauge-invariant formulation of quantum electrodynamics. Can. J. Phys. 1955, 33, 650–660. [Google Scholar] [CrossRef]
- Mandelstam, S. Quantum electrodynamics without potentials. Ann. Phys. 1962, 19, 1–24. [Google Scholar] [CrossRef]
- Kijowski, J.; Rudolph, G. New lattice approximation of gauge theories. Phys. Rev. D 1985, 31, 856–864. [Google Scholar] [CrossRef] [PubMed]
- Kijowski, J.; Rudolph, G. The functional integral on the gauge orbit space for a non-abelian Higgs model. Nucl. Phys. B 1989, 325, 211–224. [Google Scholar] [CrossRef]
- Kijowski, J.; Rudolph, G. Spinor electrodynamics in terms of gauge-invariant quantities. Lett. Math. Phys. 1993, 29, 103–109. [Google Scholar] [CrossRef]
- Kijowski, J.; Rudolph, G.; Rudolph, M. Functional integral of QED in terms of gauge-invariant quantities. Lett. Math. Phys. 1995, 33, 139–146. [Google Scholar] [CrossRef]
- Kijowski, J.; Rudolph, G.; Rudolph, M. Gauge invariant formulation and bosonization of the Schwinger model. Phys. Lett. B 1998, 419, 285–290. [Google Scholar] [CrossRef]
- Kijowski, J.; Rudolph, G.; Rudolph, M. Towards an Effective Field Theory of QED. arXiv 1999, arXiv:hep-th/9909113. [Google Scholar] [CrossRef]
- Coleman, S.; Jackiw, R.; Susskind, L. Charge shielding and quark confinement in the massive schwinger model. Ann. Phys. 1975, 93, 267–275. [Google Scholar] [CrossRef]
- Coleman, S. More about the massive Schwinger model. Ann. Phys. 1976, 101, 239–267. [Google Scholar] [CrossRef]
- Bär, O.; Brower, R.; Schlittgen, B.; Wiese, U.J. Quantum link models with many rishon flavors and with many colors. Nucl. Phys. B-Proc. Suppl. 2002, 106–107, 1019–1024. [Google Scholar] [CrossRef]
- Rico, E.; Dalmonte, M.; Zoller, P.; Banerjee, D.; Bögli, M.; Stebler, P.; Wiese, U.J. SO(3) “Nuclear Physics” with ultracold Gases. Ann. Phys. 2018, 393, 466–483. [Google Scholar] [CrossRef]
- Raychowdhury, I.; Stryker, J.R. Loop, string, and hadron dynamics in SU(2) Hamiltonian lattice gauge theories. Phys. Rev. D 2020, 101, 114502. [Google Scholar] [CrossRef]
- Kaplan, D.B.; Stryker, J.R. Gauss’s law, duality, and the Hamiltonian formulation of U(1) lattice gauge theory. Phys. Rev. D 2020, 102, 094515. [Google Scholar] [CrossRef]
- Haase, J.F.; Dellantonio, L.; Celi, A.; Paulson, D.; Kan, A.; Jansen, K.; Muschik, C.A. A resource efficient approach for quantum and classical simulations of gauge theories in particle physics. Quantum 2021, 5, 393. [Google Scholar] [CrossRef]
- Bender, J.; Zohar, E. Gauge redundancy-free formulation of compact QED with dynamical matter for quantum and classical computations. Phys. Rev. D 2020, 102, 114517. [Google Scholar] [CrossRef]
- Fontana, P.; Pinto Barros, J.C.; Trombettoni, A. Reformulation of gauge theories in terms of gauge invariant fields. Ann. Phys. 2022, 436, 168683. [Google Scholar] [CrossRef]
- Halpern, M.B. Field-strength and dual variable formulations of gauge theory. Phys. Rev. D 1979, 19, 517–530. [Google Scholar] [CrossRef]
- Durand, L.; Mendel, E. Field-strength formulation of gauge theories: Transformation of the functional integral. Phys. Rev. D 1982, 26, 1368–1379. [Google Scholar] [CrossRef]
- Mendel, E.; Durand, L. Field-strength formulation of gauge theories. The Hamiltonian approach in the Abelian theory. Phys. Rev. D 1984, 30, 1754–1762. [Google Scholar] [CrossRef]
- Giles, R. Reconstruction of gauge potentials from Wilson loops. Phys. Rev. D 1981, 24, 2160–2168. [Google Scholar] [CrossRef]
- Loll, R. Lattice gauge theory in terms of independent Wilson loops. Nucl. Phys. B-Proc. Suppl. 1993, 30, 224–227. [Google Scholar] [CrossRef]
- Loll, R. Loop approaches to gauge field theories. Theor. Math. Phys. 1992, 93, 1415–1432. [Google Scholar] [CrossRef]
- Greensite, J.P.; Lautrup, B. Phase transitions and mean-field methods in lattice gauge theory. Phys. Lett. B 1981, 104, 41–44. [Google Scholar] [CrossRef]
- Brézin, E. Quantum field theory and statistical mechanics. J. Phys. Colloq. 1982, 43, C3-743–C3-753. [Google Scholar] [CrossRef]
- Batrouni, G.G. Gauge-invariant mean-plaquette method for lattice gauge theories. Nucl. Phys. B 1982, 208, 12–26. [Google Scholar] [CrossRef]
- Akerlund, O.; de Forcrand, P. Mean distribution approach to spin and gauge theories. Nucl. Phys. B 2016, 905, 1–15. [Google Scholar] [CrossRef]
- Greensite, J.; Höllwieser, R. Relative weights approach to SU(3) gauge theories with dynamical fermions at finite density. Phys. Rev. D 2016, 94, 014504. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fontana, P.; Trombettoni, A. Mean Field Approaches to Lattice Gauge Theories: A Review. Entropy 2025, 27, 250. https://doi.org/10.3390/e27030250
Fontana P, Trombettoni A. Mean Field Approaches to Lattice Gauge Theories: A Review. Entropy. 2025; 27(3):250. https://doi.org/10.3390/e27030250
Chicago/Turabian StyleFontana, Pierpaolo, and Andrea Trombettoni. 2025. "Mean Field Approaches to Lattice Gauge Theories: A Review" Entropy 27, no. 3: 250. https://doi.org/10.3390/e27030250
APA StyleFontana, P., & Trombettoni, A. (2025). Mean Field Approaches to Lattice Gauge Theories: A Review. Entropy, 27(3), 250. https://doi.org/10.3390/e27030250