The Information Loss Problem and Hawking Radiation as Tunneling
Abstract
:1. Introduction
2. Hawking Radiation as Tunneling
3. Statistic Interpretation of Entropy
4. Time-Dependent Schrödinger Equation for Black Hole Evaporation
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hawking, S.W. Black hole explosions? Nature 1974, 248, 30. [Google Scholar] [CrossRef]
- Hawking, S.W. Particle creation by black holes. Comm. Math. Phys. 1975, 43, 199. [Google Scholar] [CrossRef]
- Hawking, S.W. Breakdown of predictability in gravitational collapse. Phys. Rev. D 1976, 14, 2460. [Google Scholar] [CrossRef]
- Hawking, S.W. Information loss in black holes. Phys. Rev. D 2005, 72, 084013. [Google Scholar] [CrossRef]
- Unruh, W.G.; Wald, R.M. Information loss in black hole. Rep. Prog. Phys. 2017, 80, 092002. [Google Scholar] [CrossRef]
- Peres, A.; Terno, D.R. Information loss. Rev. Mod. Phys. 2004, 76, 93. [Google Scholar] [CrossRef]
- Almheiri, A.; Engelhardt, N.; Marolf, D.; Maxfield, H. The entropy of bulk quantum fields and the entanglement wedge of an evaporating black hole. JHEP 2019, 12, 063. [Google Scholar] [CrossRef]
- Penington, G. Entanglement wedge reconstruction and the information paradox. JHEP 2020, 9, 002. [Google Scholar] [CrossRef]
- Maldacena, J. Black holes and quantum information. Nat. Rev. 2020, 2, 123. [Google Scholar] [CrossRef]
- Almheiri, A.; Hartman, T.; Maldacena, J.; Shaghoulian, E.; Tajdini, A. The entropy of Hawking radiation. Rev. Mod. Phys. 2021, 93, 035002. [Google Scholar] [CrossRef]
- Aharonov, Y.; Casher, A.; Nussinov, S. The unitarity puzzle and Planck mass stable particles. Phys. Lett. B 1987, 191, 51. [Google Scholar] [CrossRef]
- Chen, P.; Ong, Y.C.; Yeom, D.-H. Black hole remnants and the information loss paradox. Phys. Rep. 2015, 603, 1. [Google Scholar] [CrossRef]
- Krauss, L.M.; Wilczek, F. Discrete gauge symmetry in continuum theories. Phys. Rev. Lett. 1989, 62, 1221. [Google Scholar] [CrossRef] [PubMed]
- Hawking, S.W.; Perry, M.J.; Strominger, A. Soft Hair on Black Holes. Phys. Rev. Lett. 2016, 116, 231301. [Google Scholar] [CrossRef]
- Horowitz, G.T.; Maldacena, J. Unitarity of black hole evaporation in final-state projection models. JHEP 2004, 0402, 008. [Google Scholar] [CrossRef]
- Almheiri, A.; Marolf, D.; Polchinski, J.; Sully, J. Black Holes: Complementarity or Firewalls? JHEP 2013, 02, 062. [Google Scholar] [CrossRef]
- Maldacena, J.; Susskind, L. Cool horizons for entangled black holes. Fortsch. Phys. 2013, 61, 781. [Google Scholar] [CrossRef]
- Polchinski, J. The Black Hole Information Problem. arXiv 2017, arXiv:1609.04036. [Google Scholar]
- Harlow, D. Jerusalem lectures on black holes and quantum information. Rev. Mod. Phys. 2016, 88, 015002. [Google Scholar] [CrossRef]
- Marolf, D. The black hole information problem: Past, present, and future. Rep. Prog. Phys. 2017, 80, 092001. [Google Scholar] [CrossRef]
- Parikh, M.K.; Wilczek, F. Hawking radiation as tunneling. Phys. Rev. Lett. 2000, 85, 5042. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Cai, Q.Y.; You, L.; Zhan, M.S. Hidden messenger revealed in Hawking radiation: A resolution to the paradox of black hole information loss. Phys. Lett. B 2009, 675, 98. [Google Scholar] [CrossRef]
- Zhang, B.; Cai, Q.Y.; Zhan, M.S.; You, L. Information conservation is fundamental: Recovering the lost information in Harking radiation. Int. J. Mod. Phys. 2013, 22, 1341014. [Google Scholar] [CrossRef]
- Arzano, M.A.; Medved, J.M.; Vagenas, E.C. Hawking radiation as tunneling through the quantum horizon. JHEP 2015, 0509, 037. [Google Scholar] [CrossRef]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Hawking, S.W. Black holes and thermodynamics. Phys. Rev. D 1976, 13, 191. [Google Scholar] [CrossRef]
- Israel, W.; Yun, Z. Band-aid for information loss from black holes. Phys. Rev. D 2010, 82, 124036. [Google Scholar] [CrossRef]
- Cai, Q.Y.; Sun, C.P.; You, L. Information-carrying Hawking radiation and the number of microstate for a black hole. Nucl. Phys. B 2016, 905, 327. [Google Scholar] [CrossRef]
- Bekenstein, J.D. The quantum mass spectrum of the Kerr black hole. Lett. Nuovo C. 1974, 11, 467. [Google Scholar] [CrossRef]
- Corda, C.; Feleppa, F.; Tamburini, F.; Licata, I. Quantum oscillations in the black hole horizon. Theor. Math. Phys. 2022, 213, 1632. [Google Scholar] [CrossRef]
- Singleton, D.; Vagenas, E.C.; Zhu, T.; Ren, J.R. Insights and possible resolution to the information loss paradox via the tunneling picture. JHEP 2010, 2010, 89. [Google Scholar] [CrossRef]
- Zhang, B.; Cai, Q.Y.; Zhan, M.S.; You, L. Entropy is conserved in Hawking radiation as tunneling: A revisit of the black hole information loss paradox. Ann. Phys. 2011, 326, 350. [Google Scholar] [CrossRef]
- Zhang, B.; Cai, Q.Y.; Zhan, M.S.; You, L. Noncommutative information is revealed from Hawking radiation as tunneling. EPL 2011, 94, 20002. [Google Scholar] [CrossRef]
- Zhang, B.; Cai, Q.Y.; Zhan, M.S. Entropy Conservation in the Transition of Schwarzschild-de Sitter Space to de Sitter Space through Tunneling. Chin. Phys. Lett. 2012, 29, 020401. [Google Scholar] [CrossRef]
- Sakalli, I.; Halilsoy, M.; Pasaoglu, H. Fading Hawking Radiation. Astrophys. Space Sci. 2012, 340, 155. [Google Scholar] [CrossRef]
- Mehdipour, S.H. Planck-scale nonthermal correlations in a noncommutative geometry inspired Vaidya black hole. Can. J. Phys. 2012, 90, 425. [Google Scholar] [CrossRef]
- Zhang, B.; Cai, Q.Y.; Zhan, M.S.; You, L. Correlation, entropy, and information transfer in black hole radiation. Chin. Sci. Bull. 2014, 59, 1057. [Google Scholar] [CrossRef]
- Chen, G.R.; Huang, Y.C. Recovering information of tunneling spectrum from Weakly Isolated Horizon. Eur. Phys. J. C 2015, 75, 47. [Google Scholar] [CrossRef]
- Chen, G.R.; Huang, Y.C. Revisiting the tunneling of charged particles and information recovery from Kerr-Newman black holes. Phys. Lett. B 2019, 792, 86. [Google Scholar] [CrossRef]
- Chen, G.R.; Chen, X.; Huang, X. Fermions and vector particles tunnelling from non-rotating weakly isolated horizons. Eur. Phys. J. C 2019, 79, 523. [Google Scholar] [CrossRef]
- He, D.S. Information Conservation in a Noncommutative Quantum Black Hole Based on Canonical Typicality. Commun. Theor. Phys. 2019, 71, 1007. [Google Scholar] [CrossRef]
- Song, J.; Liu, C. Thermodynamics of a quantum corrected Reissner-Nordström black hole. Chin. J. Phys. 2024, 87, 185. [Google Scholar] [CrossRef]
- Chen, Y.X.; Shao, K.N. Information loss and entropy conservation in quantum corrected Hawking radiation. Phys. Lett. B 2009, 678, 131. [Google Scholar] [CrossRef]
- Zhang, B.; Cai, Q.Y.; Zhan, M.S. Thermodynamics Inducing Massive Particles’ Tunneling and Cosmic Censorship. Eur. Phys. J. C 2010, 68, 561. [Google Scholar] [CrossRef]
- Braunstein, S.L.; Patra, M.K. Black hole evaporation rates without spacetime. Phys. Rev. Lett. 2011, 107, 071302. [Google Scholar] [CrossRef]
- Zhang, B.; Cai, Q.Y.; Zhan, M.S.; You, L. An interpretation for the entropy of a black hole. Gen. Relativ. Gravit. 2011, 43, 797. [Google Scholar] [CrossRef]
- Corda, C. Black hole quantum spectrum. Eur. Phys. J. C 2013, 73, 2665. [Google Scholar] [CrossRef]
- Pranzetti, D. Dynamical evaporation of quantum horizons. Class. Quant. Grav. 2013, 30, 165004. [Google Scholar] [CrossRef]
- Faizal, M. Absence of Black Holes Information Paradox in Group Field Cosmology. Int. J. Geom. Meth. Mod. Phys. 2014, 11, 1450010. [Google Scholar] [CrossRef]
- Corda, C.; Hendi, S.H.; Katebi, R.; Schmidt, N.O. Effective state, Hawking radiation and quasi-normal modes for Kerr black holes. JHEP 2013, 6, 008. [Google Scholar] [CrossRef]
- Singleton, D.; Vagenas, E.C.; Zhu, T. Self-similarity, conservation of entropy/bits and the black hole information puzzle. JHEP 2014, 5, 074. [Google Scholar] [CrossRef]
- Corda, C.; Hendi, S.H.; Katebi, R.; Schmidt, N.O. Hawking radiation—Quasi-normal modes correspondence and effective states for non-extremal Reissner-Nordstrom black holes. Adv. High Energy Phys. 2014, 2014, 527874. [Google Scholar] [CrossRef]
- Dong, H.; Cai, Q.Y.; Liu, X.F.; Sun, C.P. One Hair Postulate for Hawking Radiation as Tunneling Process. Commun. Theor. Phys. 2014, 61, 289. [Google Scholar] [CrossRef]
- Corda, C. Time dependent Schrödinger equation for black hole evaporation: No information loss. Ann. Phys. 2015, 353, 71. [Google Scholar] [CrossRef]
- Corda, C. Precise model of Hawking radiation from the tunnelling mechanism. Class. Quant. Grav. 2015, 32, 195007. [Google Scholar] [CrossRef]
- Corda, C. Quasi-Normal Modes: The ‘Electrons’ of Black Holes as ‘Gravitational Atoms’? Implications for the Black Hole Information Puzzle. Adv. High Energy Phys. 2015, 2015, 867601. [Google Scholar] [CrossRef]
- Yan, H.P.; Liu, W.B. The third order correction on Hawking radiation and entropy conservation during black hole evaporation process. Phys. Lett. B 2016, 759, 293. [Google Scholar] [CrossRef]
- Silva, C.A.S.; Brito, F.A. Quantum Tunneling Radiation from Loop Quantum Black Holes and the Information Loss Paradox. Universe 2017, 3, 42. [Google Scholar] [CrossRef]
- Guo, X.K.; Cai, Q.Y. Hidden Messenger from Quantum Geometry: Towards Information Conservation in Quantum Gravity. Mod. Phys. Lett. A 2018, 33, 1850103. [Google Scholar] [CrossRef]
- Ghosal, P. Probability distribution for black hole evaporation. Phys. Rev. D 2022, 105, 124016. [Google Scholar] [CrossRef]
- Touati, A.; Zaim, S. Quantum tunneling from Schwarzschild black hole in non-commutative gauge theory of gravity. Phys. Lett. B 2024, 848, 138335. [Google Scholar] [CrossRef]
- Ming, X. Multipartite Correlations in Parikh–Wilczek Non-Thermal Spectrum. Entropy 2024, 26, 680. [Google Scholar] [CrossRef] [PubMed]
- Vanzo, L.; Acquaviva, G.; Criscienzo, R.D. Tunnelling Methods and Hawking’s radiation: Achievements and prospects. Class. Quant. Grav. 2011, 28, 183001. [Google Scholar] [CrossRef]
- Christodoulou, M.; Rovelli, C. How big is a black hole? Phys. Rev. D 2015, 91, 064046. [Google Scholar] [CrossRef]
- Zhang, B. Entropy in the interior of a black hole and thermodynamics. Phys. Rev. D 2015, 91, 081501. [Google Scholar] [CrossRef]
- Zhang, B. On the entropy associated with the interior of a black hole. Phys. Lett. B 2017, 773, 644. [Google Scholar] [CrossRef]
- Zhang, B.; You, L. Infinite volume of noncommutative black hole wrapped by finite surface. Phys. Lett. B 2017, 765, 226. [Google Scholar] [CrossRef]
- Zhang, B.; You, L. A divergent volume for black holes calls for no ‘firewall’. Commun. Theor. Phys. 2020, 72, 025401. [Google Scholar] [CrossRef]
- Vaz, C. Black holes as Gravitational Atoms. Int. J. Mod. Phys. D 2014, 23, 1441002. [Google Scholar] [CrossRef]
- Corda, C. Black hole spectra from Vaz’s quantum gravitational collapse. Fortschr. Phys. 2023, 2023, 2300028. [Google Scholar] [CrossRef]
- Corda, C. Schrödinger and Klein-Gordon theories of black holes from the quantization of the Oppenheimer and Snyder gravitational collapse. Commun. Theor. Phys. 2023, 75, 095405. [Google Scholar] [CrossRef]
- Hawking, S.W. Information Preservation and Weather Forecasting for Black Holes. arXiv 2014, arXiv:1401.5761. [Google Scholar]
- Einstein, A. On a Stationary System With Spherical Symmetry Consisting of Many Gravitating Masses. Ann. Math. (Second Ser.) 1939, 40, 922. [Google Scholar] [CrossRef]
- Mathur, S.D.; Mehta, M. The Fuzzball Paradigm. arXiv 2024, arXiv:2412.09495. [Google Scholar]
- Barceló, C.; Liberati, S.; Visser, M. Analogue gravity. Living Rev. Relativ. 2011, 14, 3. [Google Scholar] [CrossRef]
- de Nova, J.R.M.; Golubkov, K.; Kolobov, V.I.; Steinhauer, J. Observation of thermal Hawking radiation and its temperature in an analogue black hole. Nature 2019, 569, 688. [Google Scholar] [CrossRef]
- Zhang, B.; Cai, Q.Y.; Zhan, M.S.; You, L. Towards experimentally testing the paradox of black hole information loss. Phys. Rev. D 2013, 87, 044006. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Corda, C.; Cai, Q. The Information Loss Problem and Hawking Radiation as Tunneling. Entropy 2025, 27, 167. https://doi.org/10.3390/e27020167
Zhang B, Corda C, Cai Q. The Information Loss Problem and Hawking Radiation as Tunneling. Entropy. 2025; 27(2):167. https://doi.org/10.3390/e27020167
Chicago/Turabian StyleZhang, Baocheng, Christian Corda, and Qingyu Cai. 2025. "The Information Loss Problem and Hawking Radiation as Tunneling" Entropy 27, no. 2: 167. https://doi.org/10.3390/e27020167
APA StyleZhang, B., Corda, C., & Cai, Q. (2025). The Information Loss Problem and Hawking Radiation as Tunneling. Entropy, 27(2), 167. https://doi.org/10.3390/e27020167