A Network Analysis of the Impact of the Coronavirus Pandemic on the US Economy: A Comparison of the Return and the Momentum Picture
Abstract
:1. Introduction
- Pre-COVID: before COVID-19 pandemic in 2018;
- COVID: during COVID-19 pandemic in 2020;
- Post-COVID: after COVID-19 pandemic in 2022.
2. Data
3. Distance Analysis
4. Network Analysis
- Strongly correlated
- A connection between the companies is established if the distance between them is not greater than the first quartile of the distances on the appropriate distance matrix.
- Typically correlated
- The companies are connected on the network if the distance between them is greater than the first quartile and shorter than the third quartile of the distances on the appropriate distance matrix.
- Weakly correlated
- The companies are connected on the network if the distance between them is greater than the third quartile of the distances on the appropriate distance matrix.
5. Data Analysis
5.1. Statistical Properties of Distance Analysis
5.2. Network Properties—Degree Distribution
5.3. Network Properties—Clustering Coefficient
6. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
probability distribution function | |
MST | minimum spanning tree |
MD | Manhattan distance |
d | Mantegna distance |
Appendix A
References
- Kwapień, J.; Drożdż, S.; Oświe, P. The bulk of the stock market correlation matrix is not pure noise. Phys. A 2006, 359, 589–606. [Google Scholar] [CrossRef]
- Kulkarni, V.; Deo, N. Correlation and volatility in an Indian stock market: A random matrix approach. Eur. Phys. J. B 2007, 60, 101–109. [Google Scholar] [CrossRef]
- Wang, G.J.; Xie, C.; Chen, S.; Yang, J.J.; Yang, M.Y. Random matrix theory analysis of cross-correlations in the US stock market: Evidence from Pearson’s correlation coefficient and detrended cross-correlation coefficient. Phys. A 2013, 392, 3715–3730. [Google Scholar] [CrossRef]
- Sharma, C.; Banerjee, K. A study of correlations in the stock market. Phys. A 2015, 432, 321–330. [Google Scholar] [CrossRef]
- Jiang, X.; Chen, T.; Zheng, B. Structure of local interactions in complex financial dynamics. Sci. Rep. 2014, 4, 5321. [Google Scholar] [CrossRef] [PubMed]
- Bonanno, G.; Lillo, F.; Mantegna, R.N. High-frequency cross-correlation in a set of stocks. Quant. Financ. 2001, 1, 96–104. [Google Scholar] [CrossRef]
- Tumminello, M.; Lillo, F.; Mantegna, R.N. Correlation, hierarchies, and networks in financial markets. J. Econ. Behav. Organ. 2010, 75, 40–58. [Google Scholar] [CrossRef]
- Miśkiewicz, J. Distance matrix method for network structure analysis. In Statistical Tools for Finance and Insurance; Springer: Berlin/Heidelberg, Germany, 2011; pp. 251–289. [Google Scholar]
- Miśkiewicz, J. Analysis of time series correlation. The choice of distance metrics and network structure. Acta Phys. Pol. A 2012, 121, B89–B94. [Google Scholar] [CrossRef]
- Mamun, A.A.; Rajasekaran, S. An efficient minimum spanning tree algorithm. In Proceedings of the 2016 IEEE Symposium on Computers and Communication (ISCC), Messina, Italy, 27–30 June 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1047–1052. [Google Scholar]
- Pettie, S.; Ramachandran, V. An optimal minimum spanning tree algorithm. J. ACM 2002, 49, 16–34. [Google Scholar] [CrossRef]
- Mantegna, R.N. Hierarchical structure in financial markets. Eur. Phys. J. B 1999, 11, 193–197. [Google Scholar] [CrossRef]
- Onnela, J.P.; Chakraborti, A.; Kaski, K.; Kertesz, J.; Kanto, A. Dynamics of market correlations: Taxonomy and portfolio analysis. Phys. Rev. E 2003, 68, 056110. [Google Scholar] [CrossRef]
- Pollet, J.M.; Wilson, M. Average correlation and stock market returns. J. Financ. Econ. 2010, 96, 364–380. [Google Scholar] [CrossRef]
- Song, D.M.; Tumminello, M.; Zhou, W.X.; Mantegna, R.N. Evolution of worldwide stock markets, correlation structure, and correlation-based graphs. Phys. Rev. E 2011, 84, 026108. [Google Scholar] [CrossRef] [PubMed]
- Marti, G.; Nielsen, F.; Bińkowski, M.; Donnat, P. A review of two decades of correlations, hierarchies, networks and clustering in financial markets. In Progress in Information Geometry; Springer: Cham, Switzerland, 2021; pp. 245–274. [Google Scholar]
- D’Arcangelis, A.M.; Rotundo, G. Complex networks in finance. In Complex Networks and Dynamics: Social and Economic Interactions; Springer: Cham, Switzerland, 2016; pp. 209–235. [Google Scholar]
- Bonanno, G.; Caldarelli, G.; Lillo, F.; Micciche, S.; Vandewalle, N.; Mantegna, R.N. Networks of equities in financial markets. Eur. Phys. J. B 2004, 38, 363–371. [Google Scholar] [CrossRef]
- Kenett, D.Y.; Tumminello, M.; Madi, A.; Gur-Gershgoren, G.; Mantegna, R.N.; Ben-Jacob, E. Dominating clasp of the financial sector revealed by partial correlation analysis of the stock market. PLoS ONE 2010, 5, e15032. [Google Scholar] [CrossRef]
- Garas, A.; Argyrakis, P. Correlation study of the Athens stock exchange. Phys. A 2007, 380, 399–410. [Google Scholar] [CrossRef]
- Ulusoy, T.; Keskin, M.; Shirvani, A.; Deviren, B.; Kantar, E.; Çaǧrı Dönmez, C. Complexity of major UK companies between 2006 and 2010: Hierarchical structure method approach. Phys. A 2012, 391, 5121–5131. [Google Scholar] [CrossRef]
- Bergquist, S.; Otten, T.; Sarich, N. COVID-19 pandemic in the United States. Health Policy Technol. 2020, 9, 623–638. [Google Scholar] [CrossRef]
- Zhang, J.E.; Zhu, Y. VIX futures. J. Futur. Mark. 2006, 26, 521–531. [Google Scholar] [CrossRef]
- Available online: https://finance.yahoo.com (accessed on 10 June 2024).
- Friedman, M. Price Theory; Routledge: London, UK, 2017. [Google Scholar]
- Glosten, L.R.; Milgrom, P.R. Bid, ask and transaction prices in a specialist market with heterogeneously informed traders. J. Financ. Econ. 1985, 14, 71–100. [Google Scholar] [CrossRef]
- Kyle, A.S.; Obizhaeva, A.A. Market microstructure invariance: Empirical hypotheses. Econometrica 2016, 84, 1345–1404. [Google Scholar] [CrossRef]
- Gulisashvili, A. Analytically Tractable Stochastic Stock Price Models; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Kao, E.P. An Introduction to Stochastic Processes; Courier Dover Publications: Mineola, NY, USA, 2019. [Google Scholar]
- Fama, E.F. Random Walks in Stock Market Prices. Financ. Anal. J. 1995, 51, 75–80. [Google Scholar] [CrossRef]
- Ofomata, A.; Inyama, S.; Umana, R.; Omane, A. A stochastic Model of the Dynamics of Stock Price for Forecasting. J. Adv. Math. Comput. Sci. 2017, 25, 1–24. [Google Scholar] [CrossRef]
- Allen, F.; Morris, S. Game theory models in finance. In Game Theory and Business Applications; Springer: Berlin/Heidelberg, Germany, 2013; pp. 17–41. [Google Scholar]
- Vovk, V.; Shafer, G. The game-theoretic capital asset pricing model. Int. J. Approx. Reason. 2008, 49, 175–197. [Google Scholar] [CrossRef]
- Chordia, T.; Roll, R.; Subrahmanyam, A. Order imbalance, liquidity, and market returns. J. Financ. Econ. 2002, 65, 111–130. [Google Scholar] [CrossRef]
- Evans, M.D.; Lyons, R.K. Order flow and exchange rate dynamics. J. Political Econ. 2002, 110, 170–180. [Google Scholar] [CrossRef]
- Karpoff, J.M. The relation between price changes and trading volume: A survey. J. Financ. Quant. Anal. 1987, 22, 109–126. [Google Scholar] [CrossRef]
- Cao, J.; Goyal, A.; Ke, S.; Zhan, X. Options trading and stock price informativeness. J. Financ. Quant. Anal. 2024, 59, 1516–1540. [Google Scholar] [CrossRef]
- Plerou, V.; Gopikrishnan, P.; Rosenow, B.; Nunes Amaral, L.A.; Stanley, H.E. Universal and Nonuniversal Properties of Cross Correlations in Financial Time Series. Phys. Rev. Lett. 1999, 83, 1471–1474. [Google Scholar] [CrossRef]
- Wang, D.; Podobnik, B.; Horvatić, D.; Stanley, H.E. Quantifying and modeling long-range cross correlations in multiple time series with applications to world stock indices. Phys. Rev. E 2011, 83, 046121. [Google Scholar] [CrossRef]
- Conlon, T.; Cotter, J.; Gençay, R. Long-run wavelet-based correlation for financial time series. Eur. J. Oper. Res. 2018, 271, 676–696. [Google Scholar] [CrossRef]
- Horvatic, D.; Stanley, H.E.; Podobnik, B. Detrended cross-correlation analysis for non-stationary time series with periodic trends. Europhys. Lett. 2011, 94, 18007. [Google Scholar] [CrossRef]
- Arianos, S.; Carbone, A. Cross-correlation of long-range correlated series. J. Stat. Mech. Theory Exp. 2009, 2009, P03037. [Google Scholar] [CrossRef]
- Ausloos, M.; Miśkiewicz, J. Entropy correlation distance method applied to study correlations between the gross domestic product of rich countries. Int. J. Bifurc. Chaos 2010, 20, 381–389. [Google Scholar] [CrossRef]
- Krause, E.F. Taxicab geometry. Math. Teach. 1973, 66, 695–706. [Google Scholar] [CrossRef]
- D’Arcangelis, A.M.; Pierdomenico, A.; Rotundo, G. Impact of Brexit on STOXX Europe 600 Constituents: A Complex Network Analysis. Stats 2024, 7, 627–646. [Google Scholar] [CrossRef]
- Miśkiewicz, J.; Ausloos, M. Has the world economy reached its globalization limit? Phys. A 2010, 389, 797–806. [Google Scholar] [CrossRef]
- Markowitz, H.M. Foundations of portfolio theory. J. Financ. 1991, 46, 469–477. [Google Scholar] [CrossRef]
- Jobson, J.D.; Korkie, B. Estimation for Markowitz efficient portfolios. J. Am. Stat. Assoc. 1980, 75, 544–554. [Google Scholar] [CrossRef]
- Miśkiewicz, J. Network Analysis of Cross-Correlations on Forex Market during Crises. Globalisation on Forex Market. Entropy 2021, 23, 352. [Google Scholar] [CrossRef]
- Rešovskỳ, M.; Horváth, D.; Gazda, V.; Siničáková, M. Minimum spanning tree application in the currency market. Biatec 2013, 21, 21–23. [Google Scholar]
- Coletti, P. Comparing minimum spanning trees of the Italian stock market using returns and volumes. Phys. A 2016, 463, 246–261. [Google Scholar] [CrossRef]
- Saci, K.; Holden, K. Evidence on growth and financial development using principal components. Appl. Financ. Econ. 2008, 18, 1549–1560. [Google Scholar] [CrossRef]
- Kristjanpoller, W.; Minutolo, M.C. A hybrid volatility forecasting framework integrating GARCH, artificial neural network, technical analysis and principal components analysis. Expert Syst. Appl. 2018, 109, 1–11. [Google Scholar] [CrossRef]
- Tang, L.; Pan, H.; Yao, Y. K-nearest neighbor regression with principal component analysis for financial time series prediction. In Proceedings of the 2018 International Conference on Computing and Artificial Intelligence, Laguna Hills, CA, USA, 26–28 September 2018; pp. 127–131. [Google Scholar]
- Van Steen, M. Graph Theory and Complex Networks—An Introduction; Maarten: Lexington, KY, USA, 2010. [Google Scholar]
- Van Der Hofstad, R. Random Graphs and Complex Networks; Cambridge University Press: Cambridge, UK, 2024; Volume 54. [Google Scholar]
- Wang, X.F.; Chen, G. Complex networks: Small-world, scale-free and beyond. IEEE Circuits Syst. Mag. 2003, 3, 6–20. [Google Scholar] [CrossRef]
- Barabási, A.L.; Bonabeau, E. Scale-free networks. Sci. Am. 2003, 288, 50–59. [Google Scholar] [CrossRef]
- Xie, F.; Levinson, D. Measuring the Structure of Road Networks. Geogr. Anal. 2007, 39, 336–356. [Google Scholar] [CrossRef]
- Duan, Y.; Lu, F. Robustness of city road networks at different granularities. Phys. A 2014, 411, 21–34. [Google Scholar] [CrossRef]
- Zanin, M.; Lillo, F. Modelling the air transport with complex networks: A short review. Eur. Phys. J. Spec. Top. 2013, 215, 5–21. [Google Scholar] [CrossRef]
- Lacasa, L.; Cea, M.; Zanin, M. Jamming transition in air transportation networks. Phys. A 2009, 388, 3948–3954. [Google Scholar] [CrossRef]
- Zareie, A.; Sheikhahmadi, A. A hierarchical approach for influential node ranking in complex social networks. Expert. Syst. Appl. 2018, 93, 200–211. [Google Scholar] [CrossRef]
- Fortunato, S.; Flammini, A.; Menczer, F. Scale-Free Network Growth by Ranking. Phys. Rev. Lett. 2006, 96, 218701. [Google Scholar] [CrossRef]
- Onnela, J.P.; Kaski, K.; Kertész, J. Clustering and information in correlation based financial networks. Eur. Phys. J. B 2004, 38, 353–362. [Google Scholar] [CrossRef]
- Soffer, S.N.; Vázquez, A. Network clustering coefficient without degree-correlation biases. Phys. Rev. E 2005, 71, 057101. [Google Scholar] [CrossRef] [PubMed]
- Saramäki, J.; Kivelä, M.; Onnela, J.P.; Kaski, K.; Kertész, J. Generalizations of the clustering coefficient to weighted complex networks. Phys. Rev. E 2007, 75, 027105. [Google Scholar] [CrossRef]
- Boginski, V.; Butenko, S.; Pardalos, P.M. Statistical analysis of financial networks. Comput. Stat. Data Anal. 2005, 48, 431–443. [Google Scholar] [CrossRef]
- Weglarczyk, S. Kernel density estimation and its application. ITM Web Conf. 2018, 23, 00037. [Google Scholar] [CrossRef]
Weak | Typical | Strong | |
---|---|---|---|
Pre-COVID vs. COVID | |||
COVID vs. Post-COVID | |||
Pre-COVID vs. Post-COVID |
Weak | Typical | Strong | |
---|---|---|---|
Pre-COVID vs. COVID | |||
COVID vs. Post-COVID | |||
Pre-COVID vs. Post-COVID |
Weak | Typical | Strong | |
---|---|---|---|
Pre-COVID vs. COVID | |||
COVID vs. Post-COVID | |||
Pre-COVID vs. Post-COVID |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miśkiewicz, J. A Network Analysis of the Impact of the Coronavirus Pandemic on the US Economy: A Comparison of the Return and the Momentum Picture. Entropy 2025, 27, 148. https://doi.org/10.3390/e27020148
Miśkiewicz J. A Network Analysis of the Impact of the Coronavirus Pandemic on the US Economy: A Comparison of the Return and the Momentum Picture. Entropy. 2025; 27(2):148. https://doi.org/10.3390/e27020148
Chicago/Turabian StyleMiśkiewicz, Janusz. 2025. "A Network Analysis of the Impact of the Coronavirus Pandemic on the US Economy: A Comparison of the Return and the Momentum Picture" Entropy 27, no. 2: 148. https://doi.org/10.3390/e27020148
APA StyleMiśkiewicz, J. (2025). A Network Analysis of the Impact of the Coronavirus Pandemic on the US Economy: A Comparison of the Return and the Momentum Picture. Entropy, 27(2), 148. https://doi.org/10.3390/e27020148