Review of the Use of Entropy to Understand the Thermodynamics of Pure-Substance PCMs
Abstract
1. Introduction
1.1. Background on Phase Change Materials (PCMs)
1.2. Basic Thermodynamics of Phase Changes—Macroscopic and Microscopic
1.3. Goal, Scope, and Structure of the Review
2. Materials and Methods
2.1. Origin and Accuracy of Values
2.2. Units and Notation
2.3. Data Basis and Sources
3. Results
3.1. Graphical Analysis of H, T, and S Data for Trends and Correlations
3.1.1. The Elements
3.1.2. The n-Alkanes
3.1.3. Other Homologous Series: The Alkanols, Carboxylic Acids, etc.
3.1.4. Other Compounds
3.1.5. Summary
3.2. Analysis Using Information on Particles and Their Interactions
3.2.1. The Elements
3.2.2. The n-Alkanes
3.2.3. Other Homologous Series: The Alkanols, Carboxylic Acids, etc.
3.2.4. Other Compounds
3.2.5. Summary
3.3. Analysis Using Information on the Particle Arrangement
3.3.1. The Elements
3.3.2. The n-Alkanes
3.3.3. Other Homologous Series: The Alkanols, Carboxylic Acids, etc.
3.3.4. Other Compounds
3.3.5. Summary
3.4. Calculation of Properties from Atomic and Molecular Interactions
3.4.1. The Elements
3.4.2. The n-Alkanes
3.4.3. Other Homologous Series: The Alkanols, Carboxylic Acids, etc.
3.4.4. Other Compounds
3.4.5. Summary
4. Discussion
4.1. Discussion of the Analysis Tools and the PCM-Related Findings
4.1.1. Graphical Analysis of H, T, and S Data for Trends and Correlations
4.1.2. Analysis Using Information on Particles and Their Interactions
4.1.3. Analysis Using Information on the Particle Arrangement
4.1.4. Calculation of Properties from Atomic and Molecular Interaction
4.2. Discussion of Far-Reaching Findings
4.2.1. Model of Solid–Liquid and Solid–Solid Phase Change
4.2.2. Enthalpy–Entropy Correlations
5. Conclusions—Future R&D Directions
5.1. Analysis Using Material Data
5.2. Analysis by Simulating Particles and Their Interactions
5.3. Enthalpy–Entropy Correlation
5.4. Non-Pure Substances, Meaning Mixtures
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| TES | Thermal Energy Storage |
| PCM | Phase Change Material |
| IUPAC | International Union of Pure and Applied Chemistry |
| AN | Atomic Number |
| PSE | Periodic System of Elements |
| MDS | Molecular Dynamic Simulation |
| PE | Polyethylene |
References
- Faden, M.; Höhlein, S.; Wanner, J.; König-Haagen, A.; Brüggemann, D. Review of Thermophysical Property Data of Octadecane for Phase-Change Studies. Materials 2019, 12, 2974. [Google Scholar] [CrossRef]
- Cohen, R.; Cvitas, T.; Frey, J.G.; Holmstrom, B.; Kuchitsu, K.; Marquardt, R.; Mills, I.; Pavese, F.; Quack, M.; Stohner, J.; et al. Quantities, Units, and Symbols in Physical Chemistry, IUPAC Green Book, 3rd ed.; RSC Publishing: Cambridge, UK, 2007; ISBN 0-85404-433-7/13-978-0-85404-433-7. Available online: https://iupac.org/what-we-do/books/greenbook/ (accessed on 13 October 2025).
- Haynes, W.M. CRC Handbook of Chemistry and Physics, Section 6, Enthalpy of Fusion, 93rd ed.; Taylor & Francis Group: Boca Raton, FL, USA, 2012. [Google Scholar]
- NIST Chemistry WebBook, Standard Reference Database Number 69, Last Update to Data: 2025. Available online: https://doi.org/10.18434/T4D303 (accessed on 25 July 2025).
- Acree, W.; Chickos, J.S. Phase Transition Enthalpy Measurements of Organic and Organometallic Compounds. Sublimation, Vaporization and Fusion Enthalpies From 1880 to 2015. Part 1. C1–C10. J. Phys. Chem. Ref. Data 2016, 45, 033101. [Google Scholar] [CrossRef]
- Acree, W.; Chickos, J.S. Phase Transition Enthalpy Measurements of Organic and Organometallic Compounds. Sublimation, Vaporization and Fusion Enthalpies From 1880 to 2015. Part 2. C11–C192. J. Phys. Chem. Ref. Data 2017, 46, 013104. [Google Scholar] [CrossRef]
- Mehling, H.; Günther, E. Enthalpy and temperature of the phase change solid-liquid—An analysis of data of the elements by macroscopic thermodynamics. In Proceedings of the 12th International Conference on Energy Storage, Lleida, Spain, 15–17 May 2012. [Google Scholar]
- Alefeld, G. Basic physical and chemical processes for storage of heat. In Proceedings of the Symposium on “Electrode Materials and Processes for Energy Conversion and Storage”, Philadelphia, PA, USA, 8–13 May 1977; p. 489. [Google Scholar]
- Alefeld, G. Energiespeicherung durch heterogene Verdampfung I: Physikalische Grundlagen. Wärme 1975, 81, 89–93. [Google Scholar]
- de Podesta, M. Understanding the Properties of Matter, 2nd ed.; Taylor & Francis: London, UK; New York, NY, USA, 2002; ISBN 0-415-25788-3. [Google Scholar]
- Mehling, H. Enthalpy and temperature of the phase change solid–liquid—An analysis of data of the elements using information on their structure. Sol. Energy 2013, 88, 71–79. [Google Scholar] [CrossRef]
- Broadhurst, M.G. An Analysis of the Solid Phase Behavior of the Normal Paraffins. J. Res. Natl. Bur. Stand. A Phys. Chem. 1962, 66A, 241. [Google Scholar] [CrossRef]
- Dirand, M.; Bouroukba, M.; Briard, A.-J.; Chevallier, V.; Petitjean, D.; Corriou, J.-P. Temperatures and enthalpies of (solid + solid) and (solid + liquid) transitions of n-alkanes. J. Chem. Thermodyn. 2002, 34, 1255–1277. [Google Scholar] [CrossRef]
- Boese, R.; Weiss, H.-C.; Bläser, D. The Melting Point Alternation in the Short-Chain n-Alkanes: Single-Crystal X-Ray Analyses of Propane at 30 K and of n-Butane to n-Nonane at 90 K. Angew. Chem. Int. Ed. 1999, 38, 988–992. [Google Scholar] [CrossRef]
- Costa, J.C.S.; Santos, L.M.N.B.F. Chain-Length Dependence of the Thermodynamic Behavior of Homologous α,ω-Disubstituted Alkanes. J. Chem. Eng. Data 2019, 64, 2229–2246. [Google Scholar] [CrossRef]
- Dall’Acqua, L.; Della Gatta, G. Enthalpies and entropies of fusion of ten alkane-α,ω-diamines H2N–(CH2)n–NH2 where 3 ≤ n ≤ 12. J. Chem. Thermodyn. 2002, 34, 1–12. [Google Scholar] [CrossRef]
- Soodoo, N.; Poopalam, K.D.; Bouzidi, L.; Narine, S.S. Fundamental structure-function relationships in vegetable oil based phase change materials: A critical review. J. Energy Storage 2022, 51, 104355. [Google Scholar] [CrossRef]
- Mehling, H.; White, M.A. Analysis of trends in phase change enthalpy, entropy and temperature for alkanes, alcohols and fatty acids. Chem. Phys. Impact 2023, 6, 100222. [Google Scholar] [CrossRef]
- Mehling, H.; Thoen, J.; Glorieux, C.; White, M.A. High-Accuracy and High-Resolution Calorimetry Revealing New Correlations of Phase Change Enthalpy, Entropy, and Number of Carbon Atoms n in n-Alkanes. Molecules 2025, 30, 1300. [Google Scholar] [CrossRef]
- Kahwaji, S.; White, M.A. Organic Phase Change Materials for Thermal Energy Storage: Influence of Molecular Structure on Properties. Molecules 2021, 26, 6635. [Google Scholar] [CrossRef] [PubMed]
- Mehling, H. Enthalpy and temperature of the phase change solid–liquid—An analysis of data of compounds employing entropy. Sol. Energy 2013, 95, 290–299. [Google Scholar] [CrossRef]
- Liu, M.; Saman, W.; Bruno, F. Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems. Renew. Sustain. Energy Rev. 2012, 16, 2118–2132. [Google Scholar] [CrossRef]
- Palomo Del Barrio, E.; Cadoret, R.; Daranlot, J.; Achchaq, F. New sugar alcohols mixtures for long-term thermal energy storage applications at temperatures between 70 °C and 100 °C. Sol. Energy Mater. Sol. Cells 2016, 155, 454–468. [Google Scholar] [CrossRef]
- Wells, A.F. Structural Inorganic Chemistry, 5th ed.; Oxford Publications: Oxford, UK, 1984. [Google Scholar]
- Holleman, A.F.; Wiberg, E.; Wiberg, N. Lehrbuch der Anorganischen Chemie, 102nd ed.; de Gruyter: Berlin, Germany, 2007. [Google Scholar]
- Mei, Q.S.; Lu, K. Melting and superheating of crystalline solids: From bulk to nanocrystals. Prog. Mater. Sci. 2007, 52, 1175–1262. [Google Scholar] [CrossRef]
- Belonoshko, A.B.; Ahuja, R.; Johansson, B. Quasi–Ab Initio Molecular Dynamic Study of Fe Melting. Phys. Rev. Lett. 2000, 84, 3638. [Google Scholar] [CrossRef]
- Kien, P.H.; Trang, G.T.T. Simulation of structure transition of amorphous and liquid aluminium. Int. J. Microstruct. Mater. Prop. 2016, 11, 465–476. [Google Scholar] [CrossRef]
- Tafelmeier, S.; Hiebler, S. Molecular Dynamics Simulation of the Crystallization Behavior of Octadecane on a Homogeneous Nucleus. Crystals 2022, 12, 987. [Google Scholar] [CrossRef]
- Burrows, S.A.; Korotkin, I.; Smoukov, S.K.; Boek, E.; Karabasov, S. Benchmarking of Molecular Dynamics Force Fields for Solid–Liquid and Solid–Solid Phase Transitions in Alkanes. J. Phys. Chem. B 2021, 125, 5145–5159. [Google Scholar] [CrossRef] [PubMed]
- Burrows, S.A.; Lin, E.E.; Cholakova, D.; Richardson, S.; Smoukov, S.K. Structure of the Hexadecane Rotator Phase: Combination of X-ray Spectra and Molecular Dynamics Simulation. J. Phys. Chem. B 2023, 127, 7772−7784. [Google Scholar] [CrossRef] [PubMed]
- Iliev, S.; Tsibranska, S.; Ivanova, A.; Tcholakova, S.; Denkov, N. Computational assessment of hexadecane freezing by equilibrium atomistic molecular dynamics simulations. J. Colloid Interface Sci. 2023, 638, 743–757. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Surblys, D.; Ohara, T. Molecular dynamics study on phase change properties and their nano-mechanism of sugar alcohols: Melting and latent heat. Int. J. Heat Mass Transf. 2024, 234, 126104. [Google Scholar] [CrossRef]
- Lv, Y.; Ruan, C. Molecular dynamics simulation of nonisothermal crystallization of a single polyethylene chain and short polyethylene chains based on OPLS force field. e-Polymers 2022, 22, 136–146. [Google Scholar] [CrossRef]
- Paajanen, A.; Vaari, J.; Verho, T. Crystallization of cross-linked polyethylene by molecular dynamics simulation. Polymer 2019, 171, 80–86. [Google Scholar] [CrossRef]
- Mehling, H. Enthalpy, entropy, and temperature of the phase change liquid-gas—An analysis of data of 719 materials regarding systematic correlations. High Temp. High Press. 2019, 48, 233–251. [Google Scholar] [CrossRef]
- Saher, S.; Johnston, S.; Esther-Kelvin, R.; Pringle, J.M.; MacFarlane, D.R.; Matuszek, K. Trimodal thermal energy storage material for renewable energy applications. Nature 2024, 636, 622–626. [Google Scholar] [CrossRef]











Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehling, H. Review of the Use of Entropy to Understand the Thermodynamics of Pure-Substance PCMs. Entropy 2025, 27, 1130. https://doi.org/10.3390/e27111130
Mehling H. Review of the Use of Entropy to Understand the Thermodynamics of Pure-Substance PCMs. Entropy. 2025; 27(11):1130. https://doi.org/10.3390/e27111130
Chicago/Turabian StyleMehling, Harald. 2025. "Review of the Use of Entropy to Understand the Thermodynamics of Pure-Substance PCMs" Entropy 27, no. 11: 1130. https://doi.org/10.3390/e27111130
APA StyleMehling, H. (2025). Review of the Use of Entropy to Understand the Thermodynamics of Pure-Substance PCMs. Entropy, 27(11), 1130. https://doi.org/10.3390/e27111130

