Kicked General Fractional Lorenz-Type Equations: Exact Solutions and Multi-Dimensional Discrete Maps
Abstract
1. Introduction
2. Brief Overview
- For the first time, DMMs were obtained from equations with fractional integrals (FIs) in [64].
- DMMs were obtained from equations with distributed-order FDs in [70].
- Note also new works on tunable subdiffusion in DMMs, by Mendez-Bermudez and Aguilar-Sanchez [79];scaling invariance analyses for DMMs, by Borin [80]; changes in the complexity of DMMs, by Orinaite, Telksniene, Telksnys, Ragulskis [81]; and Arnold tongues of divergence in Caputo DMMs, by Orinaite, Smidtaite, Ragulskis [82].
- A method based on the equivalence of the Cauchy-type problem for fractional differential equations and the Volterra integral equation of second kind, as reported in the 2009 papers [57,58]. In these papers, we use the results of the works [20,83,84,85,86,87]. A disadvantage of this second method which hinders generalization to other types of fractional derivatives and integrals is the fact that theorems with such equivalence have not been proven for all types of fractional derivatives.
- A method based on the use of the first and second fundamental theorems of fractional calculus, which is proposed in the 2021 papers [63,64,65,66,67]. Note that the term “fundamental theorems of fractional calculus” was not used until 2008. These important properties of operators were present in books as Lemmas (for example, see Lemmas 2.4, 2.5, 2.21, and 2.22 in [20]). The use of a term similar to classical calculus was proposed in the 2008 article [88] and became generally accepted with the 2020 work by Luchko [89] and the 2021 papers [35,36] about general fractional calculus. The fundamental theorems of FC allow us to obtain exact solutions and DMMs for different FDs and FIs, as generalized in [63,64,65,66,67] and subsequent articles by the author. Note that in the paper [71], some generalization of this method is proposed for equations with kicks and two FDs.
3. General Fractional Lorenz Systems with Memory
3.1. Generalization of Fractional Lorenz Systems
3.2. Matrix Form of GF Lorenz-Type Equations
4. Kicked GF Lorenz-Type Systems with Memory
4.1. Equations of Kicked GF Lorenz-Type Systems
4.2. Derivation of Exact Analytical Solutions
4.3. Derivation of Lorenz-Type Discrete Maps from Exact Solution
4.4. Examples of First Steps of Lorenz-Type Discrete Maps
4.5. Examples of Memory Functions
- The memory function pair of the power-law type iswhere and
- The memory function pair of the gamma-distribution type iswhere and is the incomplete gamma function [115], , , and
- The memory function pair of the Bessel function type iswhere the function is the Bessel function [20] and
- The memory function pair of the hypergeometric type iswhere is the confluent hypergeometric Kummer function [20] and
5. Kicked GF Lorenz-Type Systems with Multi-Kernel Memory
5.1. Kicked GF Lorenz Equations with Multi-Kernel GF Derivatives
5.2. Kicked GF Lorenz Equations with Multi-Kernel GF Operators
5.3. Examples of Multi-Kernel Memory Functions
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schuster, H.G. Deterministic Chaos. An Introduction, 3rd ed.; Wiley-VCH: Weinheim, Germany, 1995; 320p, ISBN 978-3527293155. [Google Scholar]
- Collet, P.; Eckman, J.P. Iterated Maps on the Interval as Dynamical System; Birkhuser: Boston, MA, USA, 2009. [Google Scholar] [CrossRef]
- Lichtenberg, A.J.; Lieberman, M.A. Regular and Chaotic Dynamics; Springer: Berlin/Heidelberg, Germany, 1992. [Google Scholar] [CrossRef]
- Sagdeev, R.Z.; Usikov, D.A.; Zaslavsky, G.M. Nonlinear Physics. From the Pendulum to Turbulence and Chaos; Harwood Academic: New York, NY, USA, 1988; 656p, ISBN 3718648326/9783718648320. [Google Scholar]
- Chirikov, B.V. A universal instability of many dimensional oscillator systems. Phys. Rep. 1979, 52, 263–379. [Google Scholar] [CrossRef]
- Zaslavsky, G.M. Hamiltonian Chaos and Fractional Dynamics; Oxford University Press: Oxford, UK, 2005; 421p. [Google Scholar] [CrossRef]
- Lorenz, E.N. Deterministic nonperiodic flow. J. Atmos. Sci. 1963, 20, 130–141. [Google Scholar] [CrossRef]
- Sparrow, C. The Lorenz Equations: Bifurcations, Chaos and Strange Attractors; Springer: New York, NY, USA, 1982. [Google Scholar] [CrossRef]
- Rossler, O.E. An equation for continuous chaos. Phys. Lett. A 1976, 57, 397–398. [Google Scholar] [CrossRef]
- Rossler, O.E. An equation for hyperchaos. Phys. Lett. A 1976, 71, 155–157. [Google Scholar] [CrossRef]
- Tarasov, V.E. Fractional generalization of gradient and Hamiltonian systems. J. Phys. A Math. Gen. 2005, 38, 5929–5943. [Google Scholar] [CrossRef]
- Li, C.; Yan, J. The synchronization of three fractional differential systems. Chaos Solitons Fractals 2007, 32, 751–757. [Google Scholar] [CrossRef]
- Lu, J.; Chen, G. A new chaotic attractor coined. Int. J. Bifurc. Chaos 2002, 12, 659–661. [Google Scholar] [CrossRef]
- Zhou, T.; Tang, Y.; Chen, G. Chen’s attractor exists. Int. J. Bifurc. Chaos 2004, 14, 3167–3177. [Google Scholar] [CrossRef]
- Petras, I. Fractional-Order Nonlinear Systems. Modeling, Analysis and Simulation; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- Petras, I. The fractional-order Lorenz-type systems: A review. Fract. Calc. Appl. Anal. 2022, 25, 362–377. [Google Scholar] [CrossRef]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives Theory and Applications; Gordon and Breach: New York, NY, USA, 1993; 1006p, ISBN 9782881248641. [Google Scholar]
- Kiryakova, V. Generalized Fractional Calculus and Applications; Longman and J. Wiley: New York, NY, USA, 1994; 360p, ISBN 9780582219779. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, LA, USA, 1998; 340p. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; 540p. [Google Scholar]
- Diethelm, K. The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type; Springer: Berlin/Heidelberg, Germany, 2010; 247p. [Google Scholar] [CrossRef]
- Kochubei, A.; Luchko, Y. Handbook of Fractional Calculus with Applications. Volume 1. Basic Theory; Walter de Gruyter GmbH: Berlin, Germany, 2019; 481p, ISBN 978-3-11-057081-6. [Google Scholar] [CrossRef]
- Kochubei, A.; Luchko, Y. Handbook of Fractional Calculus with Applications. Volume 2. Fractional Differential Equations; Walter de Gruyter GmbH: Berlin, Germany, 2019; 519p, ISBN 978-3-11-057082-3. [Google Scholar] [CrossRef]
- Tarasov, V.E. Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media; Springer: New York, NY, USA, 2010; 505p. [Google Scholar] [CrossRef]
- Klafter, J.; Lim, S.C.; Metzler, R. (Eds.) Fractional Dynamics. Recent Advances; World Scientific: Singapore, 2011. [Google Scholar] [CrossRef]
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models; World Scientific: Singapore, 2010. [Google Scholar] [CrossRef]
- Atanackovic, T.; Pilipovic, S.; Stankovic, B.; Zorica, D. Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes; Wiley-ISTE: London, UK, 2014. [Google Scholar] [CrossRef]
- Atanackovic, T.; Pilipovic, S.; Stankovic, B.; Zorica, D. Fractional Calculus with Applications in Mechanics: Wave Propagation, Impact and Variational Principles; Wiley-ISTE: London, UK; Hoboken, NJ, USA, 2014. [Google Scholar] [CrossRef]
- Povstenko, Y. Fractional Thermoelasticity; Springer International Publishing: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Povstenko, Y. Linear Fractional Diffusion-Wave Equation for Scientists and Engineers; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Uchaikin, V.; Sibatov, R. Fractional Kinetics in Solids: Anomalous Probability Transport in Semiconductors, Dielectrics and Nanosystems; World Scientific: Singapore, 2013. [Google Scholar] [CrossRef]
- Uchaikin, V.; Sibatov, R. Fractional Kinetics in Space. Anomalous Transport Models; Worls Scientific: Singapore, 2018; 300p. [Google Scholar] [CrossRef]
- Ionescu, C.; Lopes, A.; Copot, D.; Tenreiro Machado, J.; Bates, J. The role of fractional calculus in modeling biological phenomena: A review. Commun. Nonlinear Sci. Numer. Simul. 2017, 51, 141–159. [Google Scholar] [CrossRef]
- Tarasov, V.E.; Tarasova, V.V. Economic Dynamics with Memory: Fractional Calculus Approach; De Gruyter: Berlin, Germany, 2021; 602p. [Google Scholar] [CrossRef]
- Luchko, Y. General fractional integrals and derivatives with the Sonine kernels. Mathematics 2021, 9, 594. [Google Scholar] [CrossRef]
- Luchko, Y. General fractional integrals and derivatives of arbitrary order. Symmetry 2021, 13, 755. [Google Scholar] [CrossRef]
- Luchko, Y. Operational calculus for the general fractional derivatives with the Sonine kernels. Fract. Calc. Appl. Anal. 2021, 24, 338–375. [Google Scholar] [CrossRef]
- Al-Kandari, M.; Hanna, L.A.M.; Luchko, Y. Operational calculus for the general fractional derivatives of arbitrary order. Mathematics 2022, 10, 1590. [Google Scholar] [CrossRef]
- Luchko, Y. Fractional differential equations with the general fractional derivatives of arbitrary order in the Riemann-Liouville sense. Mathematics 2022, 10, 849. [Google Scholar] [CrossRef]
- Ortigueira, M.D. Searching for Sonin kernels. Fract. Calc. Appl. Anal. 2024, 27, 2219–2247. [Google Scholar] [CrossRef]
- Al-Refai, M.; Fernandez, A. Generalising the fractional calculus with Sonine kernels via conjugations. J. Comput. Appl. Math. 2023, 427, 115159. [Google Scholar] [CrossRef]
- Fernandez, A. Extending Sonine kernels to arbitrary dimensions. Banach J. Math. Anal. 2025, 19, 25. [Google Scholar] [CrossRef]
- Tarasov, V.E. General fractional calculus: Multi-kernel approach. Mathematics 2021, 9, 1501. [Google Scholar] [CrossRef]
- Tarasov, V.E. Multi-kernel general fractional calculus of arbitrary order. Mathematics 2023, 11, 1726. [Google Scholar] [CrossRef]
- Tarasov, V.E. Extension of Luchko operational calculus to multi-kernel general fractional derivatives. Comput. Appl. Math. 2026; Accepted. [Google Scholar]
- Kochubei, A.N. General fractional calculus, evolution equations and renewal processes. Integral Equ. Oper. Theory 2011, 71, 583–600. [Google Scholar] [CrossRef]
- Kochubei, A.N. General fractional calculus. Chapter 5. In Handbook of Fractional Calculus with Applications. Volume 1. Basic Theory; Kochubei, A., Luchko, Y., Eds.; De Gruyter: Berlin, Germany, 2019; pp. 111–126. [Google Scholar] [CrossRef]
- Kochubei, A.N. Equations with general fractional time derivatives. Cauchy problem. Chapter 11. In Handbook of Fractional Calculus with Applications. Volume 2. Fractional Differential Equations; Kochubei, A., Luchko, Y., Eds.; De Gruyter: Berlin, Germany, 2019; pp. 223–234. [Google Scholar] [CrossRef]
- Hanyga, A. A comment on a controversial issue: A generalized fractional derivative cannot have a regular kernel. Fract. Calc. Appl. Anal. 2020, 23, 211–223. [Google Scholar] [CrossRef]
- Fulinski, A.; Kleczkowski, A.S. Nonlinear maps with memory. Phys. Scr. 1987, 35, 119–122. [Google Scholar] [CrossRef]
- Fick, E.; Fick, M.; Hausmann, G. Logistic equation with memory. Phys. Rev. A 1991, 44, 2469–2473. [Google Scholar] [CrossRef]
- Giona, M. Dynamics and relaxation properties of complex systems with memory. Nonlinearity 1991, 4, 911–925. [Google Scholar] [CrossRef]
- Hartwich, K.; Fick, E. Hopf bifurcations in the logistic map with oscillating memory. Phys. Lett. A 1993, 177, 305–310. [Google Scholar] [CrossRef]
- Gallas, J.A.C. Simulating memory effects with discrete dynamical systems. Phys. A Stat. Mech. Its Appl. 1993, 195, 417–430, Erratum in Phys. A Stat. Mech. Its Appl. 1993, 198, 339. [Google Scholar] [CrossRef]
- Stanislavsky, A.A. Long-term memory contribution as applied to the motion of discrete dynamical system. Chaos Interdiscip. J. Nonlinear Sci. 2006, 16, 043105. [Google Scholar] [CrossRef]
- Tarasov, V.E.; Zaslavsky, G.M. Fractional equations of kicked systems and discrete maps. J. Phys. A 2008, 41, 435101. [Google Scholar] [CrossRef]
- Tarasov, V.E. Differential equations with fractional derivative and universal map with memory. J. Phys. A 2009, 42, 465102. [Google Scholar] [CrossRef]
- Tarasov, V.E. Discrete map with memory from fractional differential equation of arbitrary positive order. J. Math. Phys. 2009, 50, 122703. [Google Scholar] [CrossRef]
- Tarasov, V.E. Fractional Zaslavsky and Henon discrete maps. In Long-range Interactions, Stochasticity and Fractional Dynamics; Luo, A.C.J., Afraimovich, V., Eds.; Springer and HEP: New York, NY, USA, 2010; pp. 1–26. 275p. [Google Scholar] [CrossRef]
- Tarasov, V.E.; Edelman, M. Fractional dissipative standard map. Chaos Interdiscip. J. Nonlinear Sci. 2010, 20, 023127. [Google Scholar] [CrossRef]
- Tarasova, V.V.; Tarasov, V.E. Logistic map with memory from economic model. Chaos Solitons Fractals 2017, 95, 84–91. [Google Scholar] [CrossRef]
- Tarasov, V.E. Predator-prey models with memory and kicks: Exact solution and discrete maps with memory. Math. Methods Appl. Sci. 2021, 44, 1514–11525. [Google Scholar] [CrossRef]
- Tarasov, V.E. Quantum maps with memory from generalized Lindblad equation. Entropy 2021, 23, 544. [Google Scholar] [CrossRef]
- Tarasov, V.E. Integral equations of non-integer orders and discrete maps with memory. Mathematics 2021, 9, 1177. [Google Scholar] [CrossRef]
- Tarasov, V.E. Nonlinear fractional dynamics with kicks. Chaos Solitons Fractals 2021, 151, 111259. [Google Scholar] [CrossRef]
- Tarasov, V.E. Fractional dynamics with non-local scaling. Commun. Nonlinear Sci. Numer. Simul. 2021, 102, 105947. [Google Scholar] [CrossRef]
- Tarasov, V.E. From fractional differential equations with Hilfer derivatives. Comput. Appl. Math. 2021, 40, 296. [Google Scholar] [CrossRef]
- Tarasov, V.E. General fractional dynamics. Mathematics 2021, 9, 1464. [Google Scholar] [CrossRef]
- Tarasov, V.E. Multi-kernel discrete maps with memory from general fractional differential and integral equations. Nonlinear Dyn. 2025. [Google Scholar] [CrossRef]
- Tarasov, V.E. Discrete maps with distributed memory fading parameter. Comput. Appl. Math. 2024, 43, 113. [Google Scholar] [CrossRef]
- Tarasov, V.E. Periodically kicked rotator with power-law memory: Exact solution and discrete maps. Fractal Fract. 2025, 9, 472. [Google Scholar] [CrossRef]
- Edelman, M.; Tarasov, V.E. Fractional standard map. Phys. Lett. A 2009, 374, 279–285. [Google Scholar] [CrossRef]
- Edelman, M. Fractional standard map: Riemann-Liouville vs. Caputo. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 4573–4580. [Google Scholar] [CrossRef]
- Edelman, M. Fractional maps and fractional attractors. Part I: Alpha-families of maps. Discontin. Nonlinearity Complex. 2013, 1, 305–324. [Google Scholar] [CrossRef]
- Edelman, M. Universal fractional map and cascade of bifurcations type attractors. Chaos Interdiscip. J. Nonlinear Sci. 2013, 23, 033127. [Google Scholar] [CrossRef] [PubMed]
- Edelman, M.; Taieb, L. New types of solutions of non-Linear fractional differential equations. In Advances in Harmonic Analysis and Operator Theory; Series: Operator Theory: Advances and Applications; Almeida, A., Castro, L., Speck, F.-O., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 229, pp. 139–155. [Google Scholar] [CrossRef]
- Edelman, M. Fractional maps as maps with power-law memory. In Nonlinear Dynamics and Complexity; Afraimovich, A., Luo, A.C.J., Fu, X., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; Volume 8, pp. 79–120. [Google Scholar] [CrossRef]
- Edelman, M. On universality in fractional dynamics. In Proceedings of the ICFDA’14 International Conference on Fractional Differentiation and Its Applications, Catania, Italy, 23–25 June 2014; 6p. [Google Scholar] [CrossRef]
- Mendez-Bermudez, J.A.; Aguilar-Sanchez, R. Tunable subdiffusion in the Caputo fractional standard map. Commun. Nonlinear Sci. Numer. Simul. 2024, 135, 108075. [Google Scholar] [CrossRef]
- Borin, D. Caputo fractional standard map: Scaling invariance analyses. Chaos Solitons Fractals 2024, 181, 11597. [Google Scholar] [CrossRef]
- Orinaite, U.; Telksniene, I.; Telksnys, T.; Ragulskis, M. How does the fractional derivative change the complexity of the caputo standard fractional map. Int. J. Bifurc. Chaos 2024, 34, 2450085. [Google Scholar] [CrossRef]
- Orinaite, U.; Smidtaite, R.; Ragulskis, M. Arnold tongues of divergence in the Caputo fractional standard map of nilpotent matrices. Nonlinear Anal. Model. Control 2025, 30, 1–8. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Bonilla, B.; Trujillo, J.J. Nonlinear differential equations of fractional order is space of integrable functions. Dokl. Math. 2000, 62, 222–226. [Google Scholar]
- Kilbas, A.A.; Bonilla, B.; Trujillo, J.J. Existence and uniqueness theorems for nonlinear fractional differential equations. Demonstr. Math. 2000, 33, 583–602. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Marzan, S.A. The Cauchy problem for differential equations with fractional Caputo derivative. Dokl. Math. 2004, 70, 841–845. [Google Scholar]
- Kilbas, A.A.; Marzan, S.A. The Cauchy problem for differential equations with fractional Caputo derivative. Fract. Calc. Appl. Anal. 2004, 7, 297–321. Available online: https://buldml.math.bas.bg/en/v/1229 (accessed on 12 October 2025).
- Kilbas, A.A.; Marzan, S.A. Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions. Differ. Equ. 2005, 41, 84–89. [Google Scholar] [CrossRef]
- Tarasov, V.E. Fractional vector calculus and fractional Maxwell’s equations. Ann. Phys. 2008, 323, 2756–2778. [Google Scholar] [CrossRef]
- Luchko, Y. Fractional derivatives and the fundamental theorem of Fractional Calculus. Fract. Calc. Appl. Anal. 2020, 23, 939–966. [Google Scholar] [CrossRef]
- Goodrich, C. Peterson A.C. Discrete Fractional Calculus; Springer: Berlin/Heidelberg, Germany, 2015; ISBN 978-3-319-25560-6. [Google Scholar] [CrossRef]
- Ferreira, R.A.C. Discrete Fractional Calculus and Fractional Difference Equations; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Ortigueira, M.D. Discrete-time fractional difference calculus: Origins, evolutions, and new formalisms. Fractal Fract. 2023, 7, 502. [Google Scholar] [CrossRef]
- Ferreira, R.A.C.; Rocha, C.D.A. Discrete convolution operators and equations. Fract. Calc. Appl. Anal. 2024, 27, 757–771. [Google Scholar] [CrossRef]
- Antoniouk, A.V.; Kochubei, A. Discrete-time general fractional calculus. Fract. Calc. Appl. Anal. 2024, 27, 2948–2963. [Google Scholar] [CrossRef]
- Kochubei, A.N. Chaotic property in general fractional calculus. Chaos Interdiscip. J. Nonlinear Sci. 2024, 34, 123165. [Google Scholar] [CrossRef]
- Edelman, M. Caputo standard alpha-family of maps: Fractional difference vs. fractional. Chaos Interdiscip. J. Nonlinear Sci. 2014, 24, 023137. [Google Scholar] [CrossRef]
- Edelman, M. Fractional maps and fractional attractors. Part II: Fractional difference α-families of maps. Discontin. Nonlinearity Complex. 2015, 4, 391–402. [Google Scholar] [CrossRef]
- Edelman, M. On the fractional Eulerian numbers and equivalence of maps with long term power-law memory (integral Volterra equations of the second kind) to Grunvald-Letnikov fractional difference (differential) equations. Chaos Interdiscip. J. Nonlinear Sci. 2015, 25, 073103. [Google Scholar] [CrossRef]
- Edelman, M. On nonlinear fractional maps: Nonlinear maps with power-law memory. In Proceedings of the International Conference CCT15—Chaos, Complexity and Transport 2015, Marseilles, France, 1–5 June 2015; Leoncini, X., Eloy, C., Boedec, G., Eds.; World Scientific: Singapore, 2017; pp. 119–130, ISBN 978-981-3202-74-0. [Google Scholar] [CrossRef]
- Edelman, M. On stability of fixed points and chaos in fractional systems. Chaos Interdiscip. J. Nonlinear Sci. 2018, 28, 023112. [Google Scholar] [CrossRef]
- Edelman, M. Universality in systems with power-law memory and fractional dynamics. In Chaotic, Fractional, and Complex Dynamics: New Insights and Perspectives; Edelman, M., Macau, E.E.N., Sanjuan, M.A.F., Eds.; Springer International Publishing AG: Cham, Switzerland, 2018; pp. 147–171. [Google Scholar] [CrossRef]
- Edelman, M. Maps with power-law memory: Direct introduction and Eulerian numbers, fractional maps, and fractional difference maps. In Handbook of Fractional Calculus with Applications. Volume 2. Fractional Differential Equations; Walter de Gruyter GmbH: Berlin, Germany, 2019; pp. 47–63. ISBN 978-3-11-057082-3. [Google Scholar] [CrossRef]
- Edelman, M. Dynamics of nonlinear systems with power-law memory. In Handbook of Fractional Calculus with Applications. Volume 4. Application in Physics. Part A; Walter de Gruyter GmbH: Berlin, Germany, 2019; pp. 103–132. 306p, ISBN 978-3-11-057088-5. [Google Scholar] [CrossRef]
- Edelman, M. Cycles in asymptotically stable and chaotic fractional maps. Nonlinear Dyn. 2021, 104, 2829–2841. [Google Scholar] [CrossRef]
- Edelman, M.; Helman, A.B. Asymptotic cycles in fractional maps of arbitrary positive orders. Fract. Calc. Appl. Anal. 2022, 25, 181–206. [Google Scholar] [CrossRef]
- Edelman, M.; Helman, A.B.; Smidtaite, R. Bifurcations and transition to chaos in generalized fractional maps of the orders 0 < α < 1. Chaos Interdiscip. J. Nonlinear Sci. 2023, 33, 063123. [Google Scholar] [CrossRef]
- Edelman, M. Stability of fixed points in generalized fractional maps of the orders 0 < α < 1. Nonlinear Dyn. 2023, 111, 10247–10254. [Google Scholar] [CrossRef]
- Edelman, M. Asymptotically periodic and bifurcation points in fractional difference maps. Fractal Fract. 2025, 9, 231. [Google Scholar] [CrossRef]
- Hu, T. Discrete chaos in fractional Henon map. Appl. Math. 2014, 5, 2243–2248. [Google Scholar] [CrossRef]
- Jouini, L.; Ouannas, A.; Khennaoui, A.A.; Wang, X.; Grassi, G.; Pham, V.-T. The fractional form of a new three-dimensional generalized Henon map. Adv. Differ. Equ. 2019, 2019, 122. [Google Scholar] [CrossRef]
- Khennaoui, A.-A.; Ouannas, A.; Bendoukha, S.; Grassi, G.; Lozi, R.P.; Pham, V.-T. On fractional-order discrete-time systems: Chaos, stabilization and synchronization. Chaos Solitons Fractals 2019, 119, 150–162. [Google Scholar] [CrossRef]
- Edelman, M. Asymptotic cycles in fractional generalizations of multidimensional maps. Fract. Calc. Appl. Anal. 2025, 28, 24–37. [Google Scholar] [CrossRef]
- Lighthill, M.J. An Introduction to Fourier Analysis and Generalised Functions; Cambridge University Press: Cambridge, UK, 1958; 79p, ISBN 9781139171427. [Google Scholar] [CrossRef]
- Gel’fand, I.M.; Shilov, G.E. Generalized Functions, I: Properties and Operations; Academic Press: New York, NY, USA, 1964. [Google Scholar]
- Erdelyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; Volume II. Bateman Manuscript Project; McGraw-Hill: New York, NY, USA, 1953. [Google Scholar]
- Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag-Leffler Functions, Related Topics and Applications, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2020; 340p. [Google Scholar] [CrossRef]
- Sabatier, J.; Agrawal, O.P.; Tenreiro Machado, J.A. Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering; Springer Publishing Company: Berlin/Heidelberg, Germany, 2007; 552p, ISBN 978-1-4020-6041-0. [Google Scholar]
- Edelman, M.; Macau, E.E.N.; Sanjuan, M.A.F. Chaotic, Fractional, and Complex Dynamics: New Insights and Perspectives; Springer International Publishing AG: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Luchko, Y. Fractional Integrals and Derivatives: “True” versus “False”; MDPI: Basel, Switzerland, 2022; 220p. [Google Scholar] [CrossRef]
- Agarwal, P.; Martinez, L.V.; Lenzi, E.K. Recent Trends in Fractional Calculus and Its Applications; Academic Press: New York, NY, USA, 2024. [Google Scholar] [CrossRef]
- Korus, P.; Valdes, J.E.N. Recent Advances in Fractional Calculus; MDPI: Basel, Switzerland, 2024; 186p. [Google Scholar] [CrossRef]
- Valdes, J.E.N. Generalized fractional Hilfer integral and derivative. Contrib. Math. 2020, 2, 55–60. [Google Scholar] [CrossRef]
- Gomez, L.; Valdes, J.E.N.; Rosales, J.J. Hermite-Hadamard Framework for (h,m)-Convexity. Fractal Fract. 2025, 9, 647. [Google Scholar] [CrossRef]
- Luchko, Y. The 1st level general fractional derivatives and some of their properties. J. Math. Sci. 2022, 266, 709–722. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarasov, V.E. Kicked General Fractional Lorenz-Type Equations: Exact Solutions and Multi-Dimensional Discrete Maps. Entropy 2025, 27, 1127. https://doi.org/10.3390/e27111127
Tarasov VE. Kicked General Fractional Lorenz-Type Equations: Exact Solutions and Multi-Dimensional Discrete Maps. Entropy. 2025; 27(11):1127. https://doi.org/10.3390/e27111127
Chicago/Turabian StyleTarasov, Vasily E. 2025. "Kicked General Fractional Lorenz-Type Equations: Exact Solutions and Multi-Dimensional Discrete Maps" Entropy 27, no. 11: 1127. https://doi.org/10.3390/e27111127
APA StyleTarasov, V. E. (2025). Kicked General Fractional Lorenz-Type Equations: Exact Solutions and Multi-Dimensional Discrete Maps. Entropy, 27(11), 1127. https://doi.org/10.3390/e27111127
